Errata

Title & Document Type: 3488A Switch/Control Unit Service Manual

Manual Part Number: 03488-90012

Revision Date: February 1, 2005

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

SERVICE MANUAL

MODEL 3488A SWITCH/CONTROL UNIT

Manual Part No. 03488-90012

Microfiche Part No. 03488-99012

Printed in Singapore

03488-90012

SUPERSEDES 3488A-11

HP MODEL 3488A Switch/Control Unit

Serial Numbers: All

Line Fuse Clarification

Following are the correct part numbers for HP 3488A line fuses. These fuse sizes are correct for all units, regardless of what size is silkscreened on the back panel. Please correct the replaceable parts list in your service manual.

115 Vac operation: P/N 2110-0044 300 mAT 230 Vac operation: P/N 2110-0448 160 mAT

In addition, units between Serial Numbers 2719A10500 and 2719A10580 were inadvertently shipped with a 2A line fuse installed. Testing has shown that this is not a safety concern, but transformer damage is possible. If you repair one of the above units, please check the line fuse.

Please discard any copies of Service Note 3488A-11 you may have.

REF: 09-27508

I/OF/WO

2/88-09 CWS

Printed in U.S.A.

FOR MORE INFORMATION, CALL YOUR LOCAL HP SALES OR SERVICE OFFICE ● Fast (201) 265-5000 ● Michwest (312) 255-9800 ● South (404) 955-1500 ● West (213) 970-7500 or (415) 968-9200; OR WRITE, Hewlett-Packard, 1820 Embarcadero, Palo Alto, California 94303. IN EUROPE, CALL YOUR HP SALES OR SERVICE OFFICE OR WRITE, Hewlett-Packard S.A.7, rue du Bois-du-Lan, P.O. Box CH-1217 MFYRIN 2-Geneva, Switzerland, IN JAPAN, Yokogawa-Hewlett-Packard Utd. 1-27-15, Yabe Sagamihara City, Kanagawa Prefecture, Japan 229.

SUPERSEDES NONE

HP MODEL 3488A Switch/Control Unit

Power Supply Failures

The voltage regulator module used on the HP 3488A power supply board has had a high failure rate due to a fabrication process fault. The vendor has corrected the fault and many of the faulty modules have been replaced in the field. LID would like to help protect HP customers from this problem by extending the warranty on HP 3488A's which fail due to a faulty regulator.

SYMPTOMS:

The problem is easy to detect by monitoring the +5 Vdc output at TP4 on the A31 power supply assembly using an oscilloscope. The voltage should be +5.1 Vdc, ±0.25 Vdc. (Complete procedure is described in Section 6-26 of the Service Manual.) If the voltage regulator has failed, the oscilloscope will show a dirty square wave of varying duty cycle, not a clean DC voltage.

PROCEDURE:

Replace the voltage regulator, A31 U300 (P/N 1813-0544). If the date code stenciled on the regulator is lower than "8727", then charge the repair to warranty.

NOTE: The Warranty Always condition for this Service Note expires 1 June 1990.

OF/WA

4 88-09 CWS

Printed in U.S.A.

3488A-12

SUPERSEDES NONE

HP MODEL 3488A Switch/Control Unit Serial Numbers: 2719A13650 and below

HPIB Communication Problem

The HP 3488A Switch/Control Unit may interrupt HPIB communication between a controller and another instrument. This situation occurs if the power to the HP 3488A is turned off while the controller and another instrument on the bus are communicating. All three instruments must be connected by the HPIB bus at the time.

Solution:

The transceiver chip, A40U427, has been changed to prevent this problem. A40U427 is now HP part number 1820-6045. 03488-66540 control boards with ERCs (Engineering Revision Codes) of 2822 and above contain the new component. Make a note of this change in your HP 3488A Service Manual.

Action:

Replace A40U427 with the new component ONLY upon customer complaint of the problem described in this service note.

Ref: PCO 09-27663

W/OF/WA

6/88-09/MBO

Printed in U.S.A.

34884-14

SUPERSEDES NONE

HP MODEL 3488A Switch/Test Unit Serial Numbers: 2719A12795 and Below

FIRMWARE UPDATE

The firmware of the HP 3488A Switch/Test Unit has recently been updated. The new firmware, Rev. B, is present in instruments with serial numbers above 2719A12795. These units contain controller boards (HP part number 03488-66540) with an Engineering Revision Code of 2814 and above. Rev. B firmware corrects the following problems.

HP 44472A VHF Module Channel Shorting

The center conductor and outer conductor of a channel of the VHF card are temporarily shorted together when "CLOSE" commands are executed.

This phenomena can be observed by connecting a power supply high to the VHF card's channel 0 center conductor and the power supply low to channel 0's outer conductor. Set the power supply voltage to +4 Vdc and monitor the supply output with an oscilloscope. Execute "CLOSE 0" on the HP 3488A. Next execute a "CLOSE 1" and watch for a low going pulse on the oscilloscope.

3488A Execution Speed Reduced After Basic Reset

The execution speed of the HP 3488A slows down 40% to 50% of the normal operating speed when remotely programmed.

This anomaly can be seen when the HP 3488A is in the TALK mode and a Basic RESET is executed on the controller. At this time the HP 3488A execution speed is visibly reduced. The HP 3488A continues to operate at the slower speed regardless of where the program execution resumes. This phenomena is most noticeable with the HP 44474A Digital I/O Module, however, all modules may exhibit some reduced

D/OF/WA

10/88-09/MBO

Printed in U.S.A.

PACKARD

FOR MORE INFORMATION, CALL YOUR LOCAL HP SALES OR SERVICE OFFICE ● East (201) 265-5000 ● Midwest (312) 255-9800 ● South (404) 955-1500 ● West (213) 970-7500 or (415) 968-9200; OR WRITE, Hewlett-Packard, 1820 Embarcadero, Polo Alto, California 94303. IN EUROPE, CALL YOUR HP SALES OR SERVICE OFFICE OR WRITE, Hewlett-Packard S.A.7, rue du Bois-du-Lan, P.O. Box CH-1217 MFYRIN 2-Geneva, Switzerland, IN JAPAN, Yokogawa-Hewlett-Packard Edd. 1-27-15, Yabe Sagamihara City, Kanagawa Prefecture, Japan 229.

execution speed.

This problem is due to the HP 3488A setting a false error bit indicating a bus error. The HP 3488A constantly requests service in this case, thus reducing the speed of program execution.

Action

If the HP 3488A is experiencing either of these failures, replace the HP 3488A ROM, A40U401, with the updated firmware, HP part number 1818-3830 Rev. B. Please specify Rev. B when ordering the latest ROM. Refer to Service Note 3488A-6 for instructions on installing a new ROM.

Warranty

The warranty policy for this update is warranty always ONLY if one or both of these failures is experienced.

Ref: PCO 09-27658

SERVICE MANUAL

MODEL 3488A SWITCH/CONTROL UNIT

This manual applies to instruments with a serial number prefix of:

2719A

This manual applies to the electronic assemblies marked with the Engineering Revision Codes indicated. A description of the ERC as it applies to the 3488A is given in Chapter 6. Refer to Chapter 7 for information concerning instrument serial number prefixes or ERCs lower than those listed on this title page.

Part Number	ERC
03488-66510	2718
03488-66531	2718
03488-66540	2642
44470-66501	2608
44471-66501	2709
44472-66501	2605
44473-66501	2712
44474-66501	2609

WARNING

The information in this manual is to be used by qualified service-trained personnel only. To avoid personal injury, do not perform any procedure explained in this manual, or perform any servicing of the 3488A, unless you are qualified to do so.

The 3488A uses latching relays. This is an advantage in the sense that, under most conditions of failure, the relays will remain in whatever state you set them. However, in case of power or equipment failure any application requiring a failsafe method of insuring that the circuits under control are in a known state must be provided by the installer.

Manual Part No. 03488-90012

Microfiche Part No. 03488-99012

©Copyright Hewlett-Packard Company 1983, 1987

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard instrument product is warranted against defects in materials and workmanship for a period of one year from date of shipment [,except that in the case of certain components listed in Section I of this manual, the warranty shall be for the specified period]. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by -hp-. Buyer shall prepay shipping charges to -hp- and -hp- shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to -hp- from another country.

Duration and conditions of warranty for this instrument may be superceded when the instrument is integrated into (becomes a part of) other -hp- instrument products.

Hewlett-Packard warrants that its software and firmware designated by -hp- for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

Herstellerbescheinigung

Hiermit wird bescheinigt, daβ das Gerät/System	HP 3488A			
in Übereinstimmung mit den Bestimmungen von F	Postverfügung 1046/84 funkentstört ist.			
Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes/Systems angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.				
Zusatzinformation fur Me eta - und Testgeräte				
Werden Me eta - und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Me eta aufbauten verwendet, so ist vom Betreiber sicherzustellen, da eta die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.				
Manufacturer's declaration				
This is to certify that the equipment				
is in accordance with the Radio Interference Requirements of Directive FTZ 1046/84. The German Bundespost was notified that this equipment was put into circulation, the right to check the series for compliance with the requirements was granted.				
Additional Information for Test- and Measurement Equipment				
If Test- and Measurement Equipment is operated with unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the Radio Interference Limits are still met at the border of his premises.				

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT OPERATE A DAMAGED INSTRUMENT

Whenever it is possible that the safety protection features built into this instrument have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the instrument until safe operation can be verified by service-trained personnel. If necessary, return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

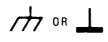
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.


Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

NOTE:

The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

Hewlett-Packard Company
3000 Hanover Street, Palo Alto, California 94304

TABLE OF CONTENTS

Cha		Page	Chapter		Page
I		ERAL INFORMATION1-1		RATING INFORMATION (Cont'd)	
	1-1	Introduction 1-1	3-4	Open	
	1-2	How To Use This Manual1-1	3-5	View	3-2
	1-3	Chapter II Installation1-1	3-6	Card Type	3-2
	1-4	Chapter III Operating	3-7	Card Reset	3-3
		Information 1-1	3-8	Card Pair	3-3
	1-5	Chapter IV Operation	3-9	Card Monitor	3-3
		Verification	3-10	Scan List	
	1-6	Chapter V Replaceable Parts1-1	3-11	Step	
	1-7	Chapter VI Service1-1	3-12	Channel	
	1-8	Chapter VII Backdating1-2	3-13	System Read (RO)	
	1-9	Chapter VIII 44470 10 Channel	3-14	System Write (RO)	3-6
	• •	Relay Multiplexer1-2	3-15	Digital I/O Card Commands	
	1-10	Chapter IX 44471A 10 Channel	3-16	Digital Mode	
	1-10	General Purpose Relay1-2	3-10	Digital Write	
	1-11		3-1.7	Digital Read	
	1-11	Chapter X 44472A Dual 4 Channel			
	1 12	VHF Switch1-2	3-19	Delay	
	1-12	Chapter XI 44473A 4X4 Matrix	3-20	Digital Binary Write (RO)	
		Switch	3-21	Digital Binary Read (RO)	
	1-13	Chapter XII 44474A 16 Channel	3-22	3488A System Commands	
		Digital Input/Output1-2	3-23	Reset	
	1-14	Description	3-24	Test	
	1-15	Specifications 1-3	3-25	Local (LO)	
	1-16	Instrument Identification1-3	3-26	Address (LO)	
	1-17	Manual Identification1-3	3-27	Service Request (LO)	3-11
	1-18	Options	3-28	Identify (RO)	3-11
	1-19	Accessories	3-29	Status	
			3-30	Store	
Cha	nter	Page	3-31	Recall	
II		ALLATION 2-1	3-32	Error	
11	2-1	Introduction 2-1	3-33	Revision (RO)	
	2-1		3-34	Mask	
	2-2	Initial Inspection	3-35	Overlap (RO)	
		Power Requirements2-2	3-36	Error Halt (RO)	
	2-4	Line Voltage Selection2-2	3-30		
	2-5	Fuses	3-37	Display (PO)	
	2-6	Power Cables		Display (RO)	
	2-7	Grounding Requirements2-3	3-39	Display On/Off (RO)	
	2-8	Environmental Requirements2-4	3-40	Key Mode (RO)	
	2-9	Temperature	3-41	Lockout (RO)	
	2-10	Humidity2-4	3-42	Interface Defined Commands	
	2-11	Card Installation2-4	3-43	Group Execute Trigger	
	2-12	Slot Numbering2-4	3-44	Device Clear	3-15
	2-13	Card Insertion2-4	Chapter		Page
	2-14	HP-IB Installation2-5		RATION VERIFICATION	
	2-15	HP-IB Cable2-5	4-1	Introduction	
	2-16	HP-IB Address2-6	4-2	General Information	
	2-17	Power On SRQ2-7	4-3	Equipment Required	
	2-18	Shipping The 3488A2-7	4-3 4-4		
	2-19	Where To Ship The 3488A2-7	4-4 4-5	Operation Verification Tests Mainframe Self-Test	
Cha	ntor	Th.	4-7	HP-IB Test	
Cha		Page	4-10	Keyboard Test	4-4
III		RATING INFORMATION3-1	4-12	44470A 10 Channel Multiplexer	
	3-1	Introduction	4 4 4	Test	4-6
	3-2	Card Commands3-1	4-14	44471A General Purpose Card	
	3-3	Close		Test	4-8

TABLE OF CONTENTS (Cont'd)

Cha		Page	Chap		Page
IV	OPE	RATION VERIFICATION (Cont'd)	VI	SERV	VICE (Cont'd)
	4-16	44472A VHF Switch Card Test4-10		6-33	Primary Functions6-13
	4-18	44473A Matrix Card Test4-12		6-34	Address Decoding6-15
	4-20	44474A Digital I/O Card Tests4-15		6-35	Backplane Interface6-17
				6-36	Interrupt Logic6-19
Cha	pter	Page		6-37	Keyboard, Display, and Address
V	REPI	LACEABLE PARTS5-1			Logic 6-20
	5-1	Introduction		6-38	Controller Troubleshooting6-20
	5-2	Disassembly/Assembly5-1		6-39	Initial Set-Up6-20
	5-3	Cover Removal5-1		6-40	Test Equipment Required6-20
	5-4	Front Panel Removal5-1		6-41	Initial Checks6-21
	5-5	Controller Board Access5-2		6-42	Controller Signature Analysis6-22
	5-6	Controller Board Removal5-3		6-44	Stuck Line Troubleshooting6-23
	5-7	Power Supply Removal5-3		•	·
	5-8	Replaceable Parts5-4	Chap	oter	Page
	5-9	Part Ordering Information5-5	VII	BACI	KDATING7-1
	5-10	Direct Mail Order System5-5		7-1	Introduction
	3-10	Direct Mail Order System		7-2	Mechanical Changes7-1
Ch-		Done		7-3	3488A Top Cover Change7-1
Chap		Page		7-4	3488A Switch Assembly Mounting
VI		ICE			Change
	6-1	Introduction		7-5	Electrical Changes
	6-2	Safety Considerations6-1		7-6	03488-66540 Controller
	6-3	Static Handling6-2		7-0 7-7	44470A 10 Channel Relay
	6-4	Printed Circuit Board		/-/	Multiplexer
		Identification 6-2		7-8	
	6-5	Board Part Number6-3		7-0	44471A 10 Channel General
	6-6	Engineering Revision Code6-3		7.0	Purpose Relay7-2
	6-7	Problem Isolation6-4		7-9	44473A 4X4 Matrix Switch7-2
	6-8	Preliminary Tests6-4		7-10	44474A 16 Channel Digital
	6-9	Board Substitution6-5			Input/Output
	6-10	Mainframe Problem Isolation6-5		7-11	03488-66510 Backplane7-3
	6-11	Power Supply6-5		7-12	03488-66530 Power Supply7-3
	6-12	Controller 6-6	Char	pter	Page
	6-13	Display 6-6			0A 10 CHANNEL RELAY
	6-14	Keyboard6-6			ULTIPLEXER 🛆
	6-15	Backplane 6-7		8-1	Introduction 8-1
	6-16	Power Supply Theory Of		8-2	Plug-In Card Wiring8-1
	0-10	Operation 6-7		8-3	Plug-In Card Cleaning8-2
	6-17	Power Supply Protection6-8		8-4	Test Fixture8-6
				8-5	Performance Tests8-6
	6-18	Controller Signals6-8		8-7	44470A DC Isolation Tests8-7
	6-19	PON		8-9	44470A Thermal Offset Test8-11
	6-20	POK6-8		8-11	Replaceable Parts8-12
	6-21	BEEP6-9			
	6-22	Power Supply Troubleshooting6-9		8-12	44470A Theory Of Operation8-12
	6-23	Test Equipment Required6-9		8-13	Input Buffer And Latch8-13
	6-24	Isolating The Power Supply6-10		8-14	Relay Drive And Sense
	6-25	Loading The Power Supply6-10			Operation 8-13
	6-26	Initial Checks6-10		8-15	Card-Type/Sense Buffer8-16
	6-27	Failing +5 Vdc6-11		8-16	Address Decoder 8-17
	6-28	Blown Fuse6-11		8-17	44470A Troubleshooting8-17
	6-29	PON Troubleshooting6-11		8-18	Introduction 8-17
	6-30	POK Troubleshooting6-12		8-19	ERR 8: Logic Slot X8-18
	6-31	Controller Theory of Operation6-12		8-21	Initial Check8-19
	6-32	Introduction 6-12		8-22	Buffer, Driver, And Relay
					Signature Analysis8-20

TABLE OF CONTENTS (Cont'd)

Chapter	Page	Chapter Page
	OA 10 CHANNEL RELAY JLTIPLEXER (Cont'd)	XI 44473A 4X4 MATRIX SWITCH11-1 11-1 Introduction
	,	
8-23	Sense Circuit Troubleshooting8-21	· · · · · · · · · · · · · · · · · · ·
8-24	Sense Circuitry Signature	11-3 Plug-In Card Cleaning
	Analysis	11-4 Text Fixture
		11-5 Performance Tests
C1 .	.	11-7 44473A DC Isolation Tests11-7
Chapter	Page	11-9 Thermal Offset Test11-13
	A 10 CHANNEL GENERAL	11-11 Replaceable Parts11-14
	RPOSE RELAY \triangle 9-1	11-12 44473A Theory Of Operation11-14
9-1	Introduction 9-1	11-13 Input Buffer And Latch11-14
9-2	Plug-In Card Wiring9-2	11-14 Relay Drive and Sense
9-3	Plug-In Card Cleaning9-2	Operation
9-4	Contact Protection9-6	11-15 Card-Type/Sense Buffer11-18
9-5	Test Fixture9-7	11-16 Address Decoder
9-6	Performance Tests9-7	11-17 44473A Troubleshooting11-19
9-8	44471A DC Isolation Tests9-8	11-18 Introduction
9-10	44471A Thermal Offset Test9-12	11-19 ERR 8: Logic Slot X11-20
9-12	Replaceable Parts9-13	11-21 Initial Checks
9-13	44471A Theory Of Operation9-13	11-22 Buffer, Driver, And Relay
9-14	Input Buffer And Latch9-13	11 == = = = = = = = = = = = = = = = = =
9-15	Relay Drive And Sense	Signature Analysis
9-13		11-23 Sense Circuit Troubleshooting11-23
0.16	Operation	11-24 Sense Circuitry Signature
9-16	Card Type/Sense Buffer9-17	Analysis
9-17	Address Decoder9-17	
9-18	44471A Troubleshooting9-18	
9-19	Introduction 9-18	Chapter Page
9-20	ERR 8: Logic Slot X9-19	XII 44474A 16 CHANNEL DIGITAL
9-22	Initial Checks9-19	INPUT/OUTPUT \triangle 12-1
9-23	Buffer, Driver, And Relay	12-1 Introduction
	Signature Analysis9-21	12-2 Plug-In Card Wiring12-1
9-24	Sense Circuit Troubleshooting9-21	12-3 Plug-In Card Cleaning12-1
9-25	Sense Circuitry Signature	12-4 Text Fixture12-6
	Analysis	12-5 Performance Tests12-6
	•	12-7 Current Sink And Output Drive
Chapter	Page	Test
	2A DUAL 4 CHANNEL VHF	12-9 Replaceable Parts12-12
	/ITCH	12-10 44474A Theory Of Operation12-12
		12-11 Bi-directional Data Lines12-12
10-1	Introduction	12-17 Bredirectional Bata Ellies
10-2	Plug-In Card Cleaning10-2	
10-3	Performance Tests10-2	
10-5	44472A DC Isolation Tests10-3	12-14 High Output Driver
10-7	44472A Thermal Offset Test10-8	12-15 Protection Circuitry12-16
10-9	High Frequency Tests10-9	12-16 Comparator
10-16	Replaceable Parts10-17	12-17 Output Latch And Buffer12-17
10-17	44472A Theory Of Operation10-20	12-18 Handshake Lines12-17
10-18		12-19 PFLG/External Increment
10-19		Line
10-20		12-20 Address Decoder
10-21		12-21 Card-Type Buffer12-19
	2 44472A Troubleshooting10-21	12-22 44474A Troubleshooting12-19
10-22		12-23 Introduction
10-25		12-25 44474A Signature Analysis12-21
10-25		
10-20	Signature Analysis10-24	
	51911811115 ATIAIVSIS	

LIST OF TABLES

Table	Page	Table	Page
1-1	3488A Specifications & Information1-5	8-3a	Sense Circuit Signature8-23
2-1	HP-IB Addresses2-6	8-3b	Components Used For Signatures8-23
	CARD TYPE Command Responses3-2	9-1	Replaceable Parts9-15
3-1	Card Monitor Mode3-4	9-2	Buffer, Driver, And Relay Signatures
3-2	Mode and Polarity Specifiers3-7		(Test 2)9-23
3-3	Mode and Polarity Specificis	9-3a	Sense Circuit Signatures9-23
3-4	Self-Test Failures3-10	9-3b	Components Used For Signatures9-23
3-5	Status Byte Values	10-1	Channels Under Test/Adjacent
3-6	Error Conditions3-13	10-1	
3-7	SRQ Mask3-13	10.0	Channels
4-1	Self-Test Failure Modes4-3	10-2	Replaceable Parts10-18
4-2	3488A Keyboard Test4-5	10-3	Buffer, Driver, And Relay Signatures
5-1	Mechanical Replaceable Parts5-5		(Test 2)
5-2	Code List of Manufacturers5-6	11-1	Replaceable Parts11-16
5-3	Replaceable Parts5-11	11-2	Buffer, Driver, And Relay Signatures
7-1	Replaceable Parts for 03488-66530		(Test 2)11-24
, -	Power Supply7-9		Sense Circuit Signatures11-25
8-1	Replaceable Parts8-14	11-3b	Components Used For Signatures11-25
8-2	Buffer, Driver, And Relay	12-1	Replaceable Parts12-13
0-2	Signatures (Test 2)8-22		
	LIST OF ILLUS	TDATIO	INC
	LIST OF ILLUS	IINAIIU	, mo
T ?:	Page	Figure	Page
Figure			Channel To Common DC Isolation Test8-9
	Line Voltage Selection Switch2-2	8-5	
	Line Power Cables2-3	8-6	Common High To Low DC Isolation
	Slot Numbers2-5		Test
	44470A Test Configuration4-6	8-7	Common To Chassis DC Isolation8-11
	44471A Test Configuration4-8	8-8	44470A Disassembly8-13
	Matrix Card Test Configuration4-13	8-9	One Relay Drive and Sense Circuit8-16
	44474A Test Fixture4-16	8-10	Control Line Timing (Read)8-17
	Cable Removal5-2	8-11	Control Line Timing (Write)8-18
	Shield Removal5-3	8-12	44470A Schematic8-25
5-3	Power Supply Removal5-4	9-1	44471A Simplified Schematic9-1
5-4	3488A Disassembly5-7	9-2	Plug-In Card Wiring9-3
5-5	3488A Disassembly5-9	9-3	Typical Snubber Circuit9-6
6-1	Typical ERC Label6-3	9-4	44471A Test Fixture9-8
	TP3 (GND) and TP4 Test Points6-6	9-5	DC Isolation Test Set-Up9-9
	Simplified Power Supply6-7	9-6	Open Channel DC Isolation Test9-10
6-4	Controller Basic Block Diagram6-13	9-7	Channel To Chassis DC Isolation9-11
6-5	Primary Functions Simplified	9-8	Adjacent Channel DC Isolation9-12
0.5	Schematic 6-14	9-9	44471A Disassembly9-14
6-6	Address Decoding Simplified	9-10	One Relay Drive And Sense Circuit9-17
00	Schematic 6-16	9-11	Control Line Timing (Read)9-18
6-7	Backplane Interface Simplified	9-12	Control Line Timing (Write)9-18
0-7	Schematic	9-13	44471A Schematic
<i>c</i> 0	Interrupt Logic Simplified Schematic 6-19	10-1	44472A Simplified Schematic
		10-1	
	Backplane Schematic		DC Isolation Test Set-Up10-4
	Power Supply Schematic6-53	10-3	Open Channel DC Isolation Test10-5
	Controller Schematic6-55	10-4	Channel To Chassis DC Isolation10-6
7-1	Signature Changes for 1818-3306	10-5	High To Low DC Isolation10-7
	ROM (ERC 2338 and 2341)7-1	10-6	Insertion Loss Calibration Setup10-11
	03488-66530 Power Supply Schematic7-11	10-7	44472A Disassembly
	44470A Simplified Schematic8-1	10-8	One Relay Drive Circuit10-20
	Plug-In Card Wiring8-3	10-9	Control Line Timing (Read)10-21
	44470 Test Fixture8-7		Control Line Timing (Write)10-22
8-4	DC Isolation Test Set-Up8-8	10-11	44472A Schematic

LIST OF ILLUSTRATIONS (Cont'd)

Figure	:	Page	Figure		Page
11-1	44473A Simplified Schematic	. 11-1	11-15	44473 Schematic	11-2
11-2	Plug-In Card Wiring		12-1	44474A Simplified Schematic	12-2
11-3	44473A Test Fixture		12-2	Plug-In Card Wiring	
11-4	DC Isolation Test Set-Up	. 11-8	12-3	44474A Test Fixture	12-0
11-5	Row Or Column To Chassis DC		12-4	Data Line High Output Test	12-8
	Isolation Test	.11-9	12-5	Data Line Low Output Test	12-9
11-6	Row Or Column High To Low Test		12-6	Control Line High Output Test	12-10
	Wiring #1	11-10	12-7	Control Line Low Output Test	12-10
11-7	Row Or Column High To Low Test		12-8	CHAN CLOSED Line Test	. 12-1
	Circuit #1	11-11	12-9	44474A Disassembly	. 12-12
11-8	Row Or Column High To Low Test			One Data Line	
	Wiring #2		12-11	One Handshake Line	. 12-1
11-9	Row Or Column High To Low Test		12-12	External Trigger Circuit And Timing	
	Circuit #2	11-12		Diagram	. 12-19
11-10	Open Contact DC Isolation Test1	11-13	12-13	Control Line Timing (Read)	
11-11	44473A Disassembly	11-15	12-14	Control Line Timing (Write)	. 12-20
	One Relay Drive and Sense Circuit1		12-15	44474A Schematic	. 12-37
	Control Line Timing (Read)		12-16	44474B Schematic	. 12-4
	Control Line Timing (Write)				

Chapter I GENERAL INFORMATION

CHAPTER I

TABLE OF CONTENTS

		Page
1-1	Introduction	
1-2	How To Use This Manual	1-1
1-3	Chapter II Installation	1-1
1-4	Chapter III Operating Information	1-1
1-5	Chapter IV Operation Verification	1-1
1-6	Chapter V Replaceable Parts	
1-7	Chapter VI Service	
1-8	Chapter VII Backdating	1-2
1-9	Chapter VIII 44470 10 Channel Relay	
	Multiplexer	1-2
1-10	Chapter IX 44471A 10 Channel General	
	Purpose Relay	1-2
1-11	Chapter X 44472A Dual 4 Channel	
	VHF Switch	1-2
1-12	Chapter XI 44473A 4X4 Matrix Switch	1-2
1-13	Chapter XII 44474A 16 Channel Digital	
	Input/Output	1-2
1-14	Description	1-2
1-15	Specifications	1-3
1-16	Instrument Identification	1-3
1-17	Manual Identification	1-3
1-18	Options	
1-19	Accessories	1-3
	LIST OF TABLES	
	no. of there	
Table	e	Page
1-1	3488A Specifications & Information	_
	• • • • • • • • • • • • • • • • • • • •	

CHAPTER I GENERAL INFORMATION

1-1 INTRODUCTION

This manual contains the information necessary to install, test, and maintain the Hewlett-Packard Model 3488A Switch/Control Unit. This manual is intended for use only by Service Trained Personnel. Operating and Programming Personnel should refer to the Operating Manual. The Hewlett-Packard part number for the Operating Manual is 03488-90002.

1-2 HOW TO USE THIS MANUAL

This manual is divided into 12 chapters. This chapter, General Information, describes the use of the manual, gives a brief description of the 3488A and the Plug-in Cards, lists the specifications of the 3488A and the Plug-in Cards, and describes accessories available. The remainder of this manual consists of the following chapters:

1-3 Chapter II Installation

This chapter provides installation instructions for the HP 3488A Switch/Control Unit. Also included in this section are instructions for initial inspection, damage claims, preparation for use, packaging and shipment.

1-4 Chapter III Operating Information

This chapter contains a condensed description of the operating instructions contained in the Operators Manual. It is provided to give a quick overview of the operating modes and functions of the 3488A. Complete operating information is given in a separate Operating Manual (Hewlett-Packard part number 03488-90002).

1-5 Chapter IV Operation Verification

This chapter contains procedures used to gain a high confidence level that the unit and the Plug-in Cards are operating within the defined specifications. This chapter should be used for incoming inspection, post repair evaluation, and to help diagnose failures.

1-6 Chapter V Replaceable Parts

This chapter contains assembly and disassembly instructions. Included with the instructions are the mechanical part numbers used in the instrument. A list of the electrical assembly part numbers and component part numbers is also provided. Plug-in Card part lists are not included in this section. They are provided in each Plug-in Card chapter.

1-7 Chapter VI Service

This chapter contains procedures and information about problem isolation to an assembly level. Once the problem has been isolated to the assembly level, additional troubleshooting procedures are provided to isolate the problem to the component level. This chapter pro-

vides theory of operation and troubleshooting information for the mainframe only. Plug-in Card theory of operation and troubleshooting is provided in each Plug-in Card chapter.

1-8 Chapter VII Backdating

This chapter provides information to make this manual apply to earlier serial number prefixes or ERC's than those listed on the title page. A definition of the ERC is is given in Chapter 6.

1-9 Chapter VIII 44470A 10 Channel Relay Multiplexer

This chapter contains installation instructions, performance tests, troubleshooting information, and parts lists for the 44470A 10 Channel Relay Multiplexer card.

1-10 Chapter IX 44471A 10 Channel General Purpose Relay

This chapter contains installation information, performance tests, troubleshooting information, and parts lists for the 44471A 10 Channel General Purpose Relay card.

1-11 Chapter X 44472A Dual 4 Channel VHF Switch

This chapter contains installation information, performance tests, troubleshooting information, and parts lists for the 44472A Dual 4 Channel VHF Switch card.

1-12 Chapter XI 44473A 4X4 Matrix Switch

This chapter contains installation information, performance tests, troubleshooting information, and parts lists for the 44473A 4X4 Matrix Switch card.

1-13 Chapter XII 44474A 16 Channel Digital Input/Output

This chapter contains installation information, performance tests, troubleshooting information, and parts lists for the 44474A 16 Channel Digital Input/Output card.

1-14 DESCRIPTION

The 3488A Switch/Control Unit consists of a mainframe, a keyboard, a display, a power supply, a controller, and a computer interface. The mainframe provides 5 slots for optional plug-in cards. The Unit can be operated either from a remote computer program or manually from the front panel.

In either case, one or more plug-in cards are required. There are six plug-in cards available. Each card is designed for a specific application in either switching or control. The plug-in cards available are:

44470A	10 Channel Relay Multiplexer Card
44471A	10 Channel General Purpose Relay Card
44472A	Dual 4 Channel VHF Card
44473A	4 X 4 Matrix Switch Card
44474A	16 Channel Digital I/O Card
44475A	Breadboard Card
44476A/B	Microwave Switch Module
44477A	Form C Relay Module

1-15 SPECIFICATIONS

Specifications for the 3488A and the plug-in cards are given in Table 1-1. Specifications are the performance standards or limits against which the 3488A and plug-in cards are tested.

1-16 INSTRUMENT IDENTIFICATION

Hewlett-Packard instruments are identified by a two part, ten digit instrument serial number of the form 0000A00000. This serial number is in two parts. The first four digits, called the serial number prefix, is the same for all identical instruments, it changes only when a change is made to the instrument. The letter indicates the country of origin, A indicates that the instrument was made in the United States of America. The last five digits, called the serial number suffix, are unique for each instrument.

The serial number for the 3488A can be found on the bottom cover of the instrument. Please include the entire serial number (both prefix and suffix) in any correspondence about your instrument.

1-17 MANUAL IDENTIFICATION

This manual applies to mainframes with serial number prefix(es) listed on the title page. Additionally, this manual applies to electrical assemblies with the Engineering Revision Codes listed on the title page. Section 6-4 describes the Engineering Revision Code as it applies to the electrical assemblies.

This manual is periodically updated, either by revision or change sheets.

1-18 OPTIONS

The following list of equipment is available as options to the 3488A.

```
Option 010 44470A 10 Channel Relay Multiplexer Card
Option 011
           44471A 10 Channel General Purpose Relay Card
Option 012 44472A Dual 4 Channel VHF Switch Card -
Option 013
           44473A 4 x 4 Matrix Switch Card
           44474A 16 Channel Digital Input/Output Card
Option 014
Option 015
           44475A Breadboard Card
Option 016
           44476A Microwave Switch Card —
Option 017
           44477A Form C Relay Card
Option 018
           44476B Microwave Switch Card (User configurable)
Option 401
           Side Handle Kit
Option 907
           Front Handle Kit
Option 908
           Rack Flange Kit
Option 909
           Rack Flange And Front handle Kit
Option 910 Extra Operating And Service Manuals
```

1-19 ACCESSORIES

The following equipment is available as field installation kits for the 3488A.

44470A	10 Channel Relay Multiplexer Card
44471A	10 Channel General Purpose Relay Card
44472A	Dual 4 Channel VHF Switch Card
44473A	4 X 4 Matrix Switch Card

44474A 16 Channel Digital Input/Output Card

44475A Breadboard Card

44476A/B Microwave Switch Module

44477A Form C Relay

Other accessories available include:

44480A	Screw Terminal Connector Block for 44470A
44481A	Screw Terminal Connector Block for 44471A
44483A	Screw Terminal Connector Block for 44473A
44484A	Screw Terminal Connector Block for 44474A
44485A	Screw Terminal Connector Block for 44475A
44487A	Screw Terminal Connector Block for 44477A
10833A	HP-IB Cable, 1 metre
10833B	HP-IB Cable, 2 metre
10833C	HP-IB Cable, 4 metre
10833D	HP-IB Cable, 0.5 metre
10502A	BNC - BNC Cable, 23 cm (9 in)
10503A	BNC - BNC Cable, 122 cm (48 in)
1251-2816	Dual Banana Plug
1250-0781	BNC Tee (female-male-female)
5061-1173	Service Extender Board
5061-1174	Service Extender Cable
03488-66501	Test Fixture

Table 1-1 3488A Specifications & Information

GENERAL INFORMATION

WEIGHT

ENVIRONMENTAL

Operating: $0 - 55^{\circ}C$ (32 - 130°F); **Storage:** $-40 - 75^{\circ}C$ ($-40 - 165^{\circ}F$); **Humidity:** 95%, $0 - 40^{\circ}C$ (32 - $104^{\circ}F$)

POWER

Line Voltage (Mains): 86-132V (115V) or 195-250V (230V) switch selectable, 48 - 440 Hz. Fused at 0.5A (115V) or 0.25A (230V).

Consumption: 6 VA (mainframe); 18 VA (maximum).

SIZE

89mm H (without removable feet) x 425mm W x 292mm D $(3.5^{\prime\prime}$ x $16.75^{\prime\prime}$ x $11.5^{\prime\prime}$).

Height (with removable feet): 100mm (4"). Allow 76mm (3") additional depth for wiring.

Net Shipping lbs. lbs. kg. kg. 3488A mainframe-5.0 11.0 19.0 8.5 Modules (ea.)-0.71.5 1.5 3.5 Maximum Total-8.5 18.5 16.0 36.5

HP-IB (IEEE-488) Capabilities:

SH1 AH1 T6 TEO L4 LEO SR1 RL1 PPO DC1 DT1 E2

OPTION 010 44470A 10 CHANNEL RELAY MULTIPLEXER MODULE

INPUT CHARACTERISTICS

Maximum Voltage (Terminal-terminal or terminal-chassis): 250 VDC, 250 VAC RMS, 350 VAC Peak

Maximum Current: (Per channel or module): 2 ADC, 2 AAC RMS

Maximum Power (Per channel or module): 60 W DC, 500 VA AC

Maximum power dissipated by user added components: 2 W

Thermal Offset: $< 3\mu V$ differential or single ended

Closed Channel Resistance: < 2 Ω (end of relay life)

DC ISOLATION

	<(40°C,60% RH)	<(40°C,95% RH)
Open Channel, Channel-Channel*	> 10 ¹¹ Ω	$> 5 \times 10^9 \Omega$
Hi-Lo*	$> 5 \times 10^{10} \Omega$	> 10 ⁹ Ω
Channel-Chassis*	$> 5 \times 10^{10} \Omega$	> 10 ⁹ Ω

^{(*} with 1 channel closed)

AC ISOLATION/PERFORMANCE**

Capacitance:

Open Channel, Channel-Channel*	< 5 pF
Hi-Lo*	<27 pF
Channel-Chassis*	<80 pF

(* with 1 channel closed)

(50Ω termination)	100 kHz	1 MHz	10 MHz
Insertion Loss (dB)	< 0.20	< 0.25	< 0.50
Crosstalk (dB)	< - 73	< - 53	< - 33

^{* *} With chassis of all equipment connected, and with low of input lines connected to low of output lines (either directly or via 3488A switched channel).

OPTION 011 44471A 10 CHANNEL GENERAL PURPOSE RELAY MODULE

INPUT CHARACTERISTICS

Maximum Voltage (Terminal-terminal or terminal-chassis): 250 VDC, 250 VAC RMS, 350 VAC Peak

Maximum Current (Per channel): 2 ADC, 2 AAC RMS

(Per module): 20 ADC, 20 AAC RMS

Maximum Power (Per channel): 60 W DC, 500 VA AC

(Per module): 600 W DC, 5000 VA AC

Maximum power dissipated by user added components: 2 W

Thermal Offset $< 3 \mu V$ per channel

Closed Channel Resistance: < 2 Ω (end of relay life)

DC ISOLATION

	<(40°C,60% RH)	<(40°C,95% RH)
Open Channel, Channel-Channel*	> 10 ¹¹ Ω	> 10 ⁹ Ω
Channel-Chassis*	> 5×10 ¹¹ Ω	> 10 ¹⁰ Ω

(* with 1 channel closed)

Table 1-1. 3488A Specifications & Information (Cont'd)

OPTION 011 44471A 10 CHANNEL GENERAL PURPOSE RELAY MODULE (Cont'd)

AC ISOLATION/PERFORMANCE**

Capacitance:

Open Channel	< 7 pF
Channel-Channel*	<10 pF
Channel-Chassis*	<25 pF

^{(*} with 1 channel closed)

(50Ω termination)	100 kHz	1 MHz	10 MHz
Insertion Loss (dB)	< 0.20	< 0.25	< 0.50
Crosstalk (dB)	< - 73	< - 53	< - 33

^{* *} With chassis of all equipment connected, and with low of input lines connected to low of output lines (either directly or via 3488A switched channel).

OPTION 012 44472A DUAL 4 CHANNEL VHF SWITCH MODULE

INPUT CHARACTERISTICS

Maximum Voltage (Center-center, center-low): 250 VDC,

30 VAC RMS,42 VAC Peak*; (Low-chassis, low-low): 42 VDC

Maximum Current (Per channel): 30 mA DC, 300 mA AC RMS*

Thermal Offset: $< 15 \mu V$ per channel

Characteristic Impedance: 50Ω

Closed Channel Resistance: < 1 Ω (end of relay life)

*To maintain compliance with VDE class B or FTZ 1115/83 radiation limits, use semi-rigid or equivalent coax cable and limit signal to $<2x10^7\ V^*Hz.$

AC ISOLATION/PERFORMANCE

(50Ω termination)	30 MHz	100 MHz	300 MHz
Insertion Loss (dB)	< 0.5	< 0.75	< 1.25
Crosstalk (dB) Channel-Channel, Channel-Common	< -100	< -85	< -65
Cross talk group to group (dB)	< -85	< -85	< - 50
VSWR	< 1.06	< 1.12	< 1.43

Capacitance: Center-Center, Center-Common < 0.002 pF Center-Low < 70 pFLow-Chassis $< 0.2 \mu F$

Rise Time: < 0.7 nsec

Signal Delay: < 2.5 nsec; Channel match < 90 psec

DC ISOLATION

< (40°C,95% RH), between any 2 points: $> 10^7 \Omega$

GENERAL

All channels break-before-make within a group of 4 channels. When all channels in a group are opened, the last channel opened (or channel 00 or 13 following a group RESET) has channelcommon isolation of >80 dB @ 30 MHz, >60 dB @ 100 MHz, & >40 dB @ 300 MHz.

Connectors: BNC's

OPTION 013 44473A 4 X 4 MATRIX SWITCH MODULE

INPUT CHARACTERISTICS

Maximum Voltage (Terminal-terminal or terminal-chassis): 250 VDC, 250 VAC RMS, 350 VAC Peak

Maximum Current (Per channel): 2 ADC, 2 AAC RMS

Maximum Power (Per channel): 60 W DC, 500 VA AC

(Per module): 240 W DC, 2000 VA AC

(Per module): 8 ADC, 8 AAC RMS

Thermal Offset: $<3 \mu V$ differential

Closed Channel Resistance: < 3 Ω (end of relay life)

DC ISOLATION

	<(40°C,60% RH)	<(40°C,95% RH)
Open Channel, Channel-Channel	> 10 ¹¹ Ω	> 10 ⁹ Ω
Hí-La	> 10 ¹⁰ Ω	> 10 ⁸ Ω
Channel-Chassis	> 10 ¹⁰ Ω	$> 5 \times 10^8 \Omega$

Table 1-1. 3488A Specifications & Information (Cont'd)

OPTION 013 44473A 4 x 4 MATRIX SWITCH MODULE (Cont'd)

AC ISOLATION/PERFORMANCE**

Capacitance:

Open Channel, Channel-Channel	< 5 pF
Hi-Lo	<40 pF
Channel-Chassis	< 70 pF

(50 Ω termination)	100 kHz	1 MHz	10 MHz
Insertion Loss (dB)	< 0.30	< 0.35	< 0.90
Crosstalk (dB)	< - 76	< - 56	< - 36

^{**}With chassis of all equipment connected, and with low of input lines connected to low of output lines (either directly or via 3488A switched channel).

OPTION 014 44474A 16 BIT DIGITAL I/O MODULE

I/O LINES

Maximum Voltage = +30V DC (Line-Chassis)

Output Characteristics

 $\begin{array}{lll} Vout(high) \geq 2.4V @ I \leq 8 \text{ mA output} \\ Vout(low) \leq 0.4V @ I \leq 16 \text{ mA input} \\ I(low) = 125\text{mA} @ Vout(low) \leq 1.25V \\ I(low) \text{ fused at } 250 \text{ mA} \end{array}$

Input Characteristics

 $Vin(high) \ge 2V$; $Vin(low) \le 0.8V$

HANDSHAKE LINES

Maximum Voltage = +5V DC (Line-Chassis)

Output Characteristics

Vout(high) \geq 2.4V @ I \leq 400 μ A output Vout(low) \leq 0.5V @ I \leq 2 mA input

Input Characteristics

 $Vin(high) \ge 2.0V$; $Vin(low) \le 0.8V$

External Increment: Advances 3488A to next programmed configuration on falling edge of TTL pulse, 0.25 µsec minimum width.

Channel Closed: Indicates completion of new configuration; TTL pulse, 10 μsec minimum width.

OPTION 015 44475A BREADBOARD MODULE

Component Areas Available: 104mm \times 74mm (4.1" \times 2.9") and 79mm \times 74mm (3.1" \times 2.9")

Mounting Holes — Center Spacing: 2.54mm x 2.54mm ($0.1^{\prime\prime}$ x $0.1^{\prime\prime}$); Inside Diameter: 1.17mm ($0.046^{\prime\prime}$)

Maximum Component Height (above board): 12.7 mm (0.5 $^{\prime\prime}$)

Maximum Lead Length (below board): 3.2mm (0.125")

Maximum Voltage: 42 VDC, 30 VAC RMS, 42 VAC Peak

Maximum Power dissipation per module: 2 W

Signal Buses: On edge of component areas and between component areas

Connectors Supplied: Screw terminal connector with 22 terminals for field wiring, and edge connectors for 3488A backplane and screw terminals.

Chapter II INSTALLATION

CHAPTER II

TABLE OF CONTENTS

		Page
	Introduction	2-1
2-2	Initial Inspection	2-1
2-3	Power Requirements	2-2
2-4	Line Voltage Selection	
2-5	Fuses	2-2
2-6	Power Cables	2-3
2-7	Grounding Requirements	2-3
2-8		
2-9		
2-10		
2-11		
2-12		
2-13		
2-14		
2-15	HP-IB Cable	
2-16	HP-IB Address	2-6
2-17		
	Shipping The 3488A	2-7
2-19	Where To Ship The 3488A	2-7
	•	
	LIST OF TABLES	
Tabl	e	Page
2-1	HP-IB Addresses	
	LICT OF HEHICTRATIONS	
	FIST OF ILLUSTRATIONS	
Figu	re	Page
2-1	Line Voltage Selection Switch	2-2
2-2	Line Power Cables	2-3
2-3	Slot Numbers	
	2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 Tabl 2-1	2-2 Initial Inspection 2-3 Power Requirements 2-4 Line Voltage Selection 2-5 Fuses 2-6 Power Cables 2-7 Grounding Requirements 2-8 Environmental Requirements 2-9 Temperature 2-10 Humidity 2-11 Card Installation 2-12 Slot Numbering 2-13 Card Insertion 2-14 HP-IB Installation 2-15 HP-IB Cable 2-16 HP-IB Address 2-17 Power On SRQ 2-18 Shipping The 3488A 2-19 Where To Ship The 3488A 2-19 Where To Ship The 3488A LIST OF ILLUSTRATIONS Figure 2-1 Line Voltage Selection Switch 2-2 Line Power Cables

CHAPTER II INSTALLATION

2-1 INTRODUCTION

This chapter contains information and instructions required to install the Hewlett-Packard 3488A Switch/Control Unit. Included in this section are: initial inspection, power requirements, environmental requirements, information about accessories and options, and instructions for repacking and shipping the unit and plug-in cards.

WARNING

The information in this service manual is for service trained personnel only. To avoid electrical shock do not perform any procedures in this manual or do any servicing to the HP 3488A unless you are qualified to do so.

2.2 INITIAL INSPECTION

WARNING

To avoid potentially hazardous elecrical shock, do not perform electrical tests when there are signs of damage to any portion of the outer enclosure.

The 3488A was carefully inspected, both mechanically and electrically, before shipment. It should be free of any mars or scratches and in perfect electrical order upon receipt. You should inspect the Unit for any damage that may have occurred in transit. If the shipping container or packing material shows any signs of damage or stress, it should be kept until the unit has been mechanically and electrically checked. Procedures to check the electrical performance of the 3488A are given in Chapter IV. If mechanical damage is found, the shipment is incomplete, or the unit does not pass the electrical tests, notify the nearest Hewlett-Packard Sales and Service Office (a list of Sales and Service Offices is given at the back of this manual). If the shipping container or packing material shows any signs of damage or stress, notify both the carrier and the nearest Hewlett-Packard Sales and Service Office. Save the shipping material for the carrier's inspection.

Included with the 3488A should be:

- 1 Operating, Programming and Configuration Manual
- 1 Service Manual (this manual)
- 2 fuses and fuse caps (see Section 2-5)
- 1 line power cable

ECAUTION 3

Ensure that the 3488A is set to the correct line voltage before installing the line power cable. Equipment damage may result if line power is applied and the 3488A is incorrectly set.

The 3488A may be set to operate at either 115 Vac or 230 Vac. When set to the 115 Vac position, the unit may be operated with an input voltage ranging from 86 Vac to 132 Vac. When set to the 230 Vac position the unit may be operated with an input voltage ranging from 195 Vac to 250 Vac. The line power frequency must be between 48 Hz and 440 Hz, single phase. Total power consumption is less than 6 VA (3488A mainframe only), 2.4 VA per option plug-in card, or a total of 18 VA (mainframe and 5 plug-in cards).

2-4 Line Voltage Selection

The line voltage selector switch is located on the rear of the unit inside the card cage. It is necessary to set the line voltage selector switch to correspond to the local power line voltage. Figure 2-1 shows the switch set to operate with 115 Vac line input. To set the unit to operate with 230 Vac input, slide the switch to the 230 V position.

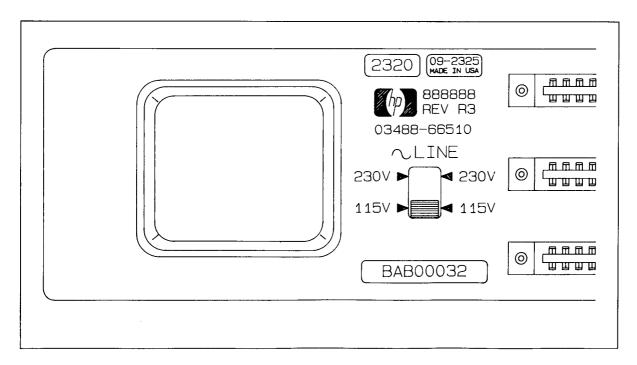


Figure 2-1 Line Voltage Selection Switch

2-5 Fuses

The 3488A does not have a fuse installed when shipped from the factory. Two fuses and fuse-caps are provided with the unit. The two fuses are electrically and physically different sizes. The two fuse-caps are different colors. Each fuse-cap will accept only one physical size of fuse. The line voltage selected (as described in section 2-4) determines which of the two fuses and fuse-caps to install.

2-2 In Apr. 196 - the soonA for only was installed. This is fine for soth fettings on 2110-0907 For 115 Vac operation install the 500 mA fuse and the grey fuse-cap. For 230 Vac operation install the 250 mA fuse and the black fuse-cap. Included with each fuse and fuse-cap set is a self-adhesive label identifying the size of fuse and line voltage selected. Affix this label to the 3488 as a permanent identification of the line voltage selected and the fuse type installed.

To install a fuse, first, place the fuse in the fuse-cap. Insert the fuse and fuse-cap assembly in the fuse holder located in the lower right corner of the rear panel. Use a small blade screwdriver to turn the fuse-cap ¼ turn clockwise. To remove a fuse, reverse the procedure.

2-6 Power Cables

The 3488A is supplied with a three conductor power cable. The type of primary power plug installed on this cable should be the correct type for local installation. Figure 2-2 shows the various primary power plugs available and lists a Hewlett-Packard part number for each. The Hewlett-Packard part number specifies the entire cable, including the primary power plug. If the cable received with the 3488A does not have the correct primary power plug for your area, contact the nearest Hewlett-Packard Sales and Service Office. A listing of the Hewlett Packard Sales and Service Offices is given at the back of this manual.

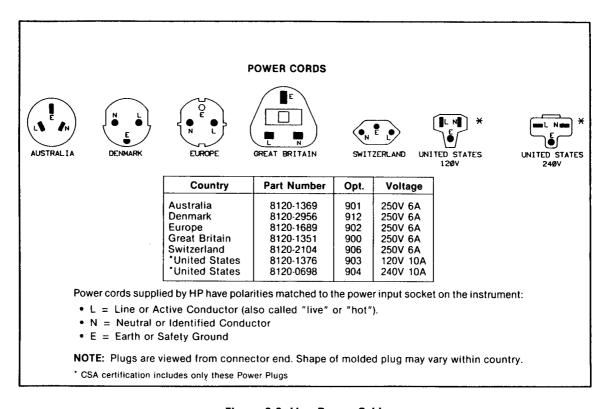


Figure 2-2 Line Power Cables

2-7 Grounding Requirements

The power cable supplied with the 3488A is a three conductor power cable. When properly connected to a grounded receptacle the third conductor in the cable grounds the 3488A chassis. Under no circumstances should this grounding be defeated. If the primary power receptacle is of the type with only two conductors, the third conductor of the power cable must be

routed to a safe earth ground. On adapters designed to mate a three conductor power cable to a two conductor receptacle the earth ground connection is typically a short green wire.

Chassis ground is also available at the rear panel of the unit and can be connected to a reliable earth ground when the power cable ground is unavailable. This ground terminal can also be used to shield input or output cabling to the 3488A or to connect other instruments in the system to a common ground. The ground connection is a silver colored terminal, located in the lower center of the rear panel. The terminal will accept a standard banana plug in the center or, by using the knurled nut, spade lugs and tinned wires.

2-8 ENVIRONMENTAL REQUIREMENTS

2-9 Temperature

The 3488A may be operated in environments with a temperature range from 0° C to 55° C (32° F to 131° F). The 3488A may be stored in environments with a temperature range from -40° C to 75° C (-40° F to 167° F).

2-10 Humidity

The 3488A may be stored or operated in environments where the humidity is less than 95% over the temperature range of 0° C to 40° C (32° F to 104° F).

In moist environments the 3488A should be protected from temperature extremes which can cause condensation within the instrument.

The instrument covers are not water or dust proof. In environments where excessive moisture, dust, or corrosive elements are present, the instrument should be protected in some type of enclosure.

2-11 CARD INSTALLATION

Up to five plug-in cards can be installed in the 3488A. Six different cards are available and any combination of these cards may be used. The plug-in cards are available as Options to the 3488A (Section 1-18) or as field installation kits (Section 1-19).

2-12 Slot Numbering

The five available slots are numbered 1 through 5. Figure 2-3 shows the location of these slots. Any plug-in card can be installed in any slot. When installing the cards, make a note of the card type and slot number used. This information is required by the system designer, system programmer, and operator.

2-13 Card Insertion

To insert one of the plug-in cards into the 3488A mainframe:

1. Remove power from the 3488A.

- 2. Remove the black connector block and grey support from the card.
- 3. Lift the two white 'ears' on the card. These ears have a detent that holds the ear in a closed position.
- 4. Hold the card so that the ears are pointing out, with the component side of the printed circuit board down. Gently slide the card into one of the slots in the rear of the 3488A. The side edges of the card should positively engage in the slots. Gently push the card into the 3488A until it stops.
- 5. Fold the ears down until they engage the detent. As the ears are folded down the card will be pulled into the connector in the backplane. This action both engages the connector and locks the card into place.

The black connector block can now be wired to suit the system needs. Detailed instructions to wire the card and install the connector and grey housing are given in appropriate chapter of this manual.

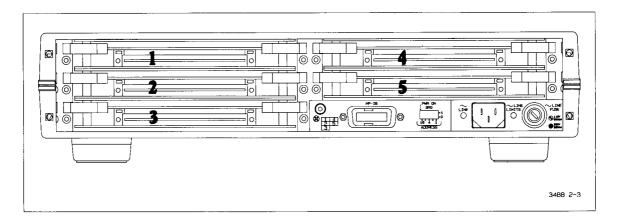


Figure 2-3 Slot Numbers

2-14 HP-IB INSTALLATION

Installing the 3488A in a computer system requires two steps; connecting the HP-IB cable and setting the HP-IB address.

2-15 HP-IB Cable

The HP-IB Cable attaches to the connector on the rear panel of the 3488A mainframe. The connector is tapered to ensure proper orientation. The two screws on the cable connector should be finger tightened to provide mechanical integrity to the connection.

Other instruments may be connected to the bus in any manner desired (i.e., series connections, parallel connections, or a combination of both). Only one requirement must be met when installing the HP-IB cables. This requirement is a maximum length requirement. In general, the maximum length of the HP-IB cables must not exceed 20 metres or 2 metres per device, whichever is less.

HP-IB cables are listed by part number in Section 1-19 of this manual.

2-16 HP-IB Address

The 3488A is shipped from the factory set to an address of 09. This address is set on a series of small switches located on the rear panel of the instrument. The switches set a five bit binary code. This binary code is referred to by its decimal equivalent. For example, the factory set binary code of 01001, is equivalent to a decimal 9.

The five switches that set the address are accessible through a rectangular hole in the rear panel. Setting the switch to the up position sets the '1' state, setting the switch down sets the '0' state. Each switch is marked with the decimal weight of the bit. The address is the sum of the weighted bits.

To select an address place the switches in the desired pattern. Table 2-1 shows all allowable combinations of the switches and the resulting decimal address code.

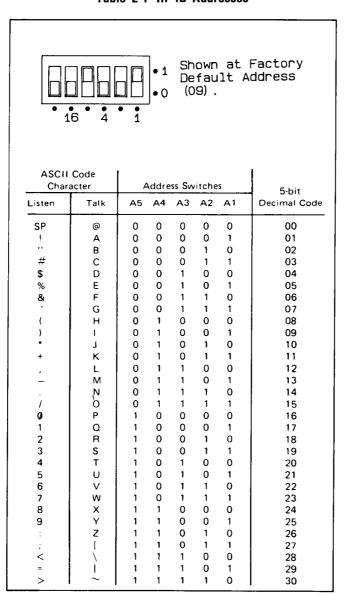


Table 2-1 HP-IB Addresses

2-17 Power On SRO

The Power On SRQ switch is located next to the HP-IB address switches. This switch is set at the factory to the off (down) position. If it is desired that the 3488A assert an HP-IB service request at each power up cycle, set the switch to the on (up) position. The 3488A Operating Manual contains additional information about power on SRQ.

2-18 SHIPPING THE 3488A

Should it become necessary to ship the 3488A or any of the plug-in cards to Hewlett-Packard, follow these guidelines:

- 1. Remove all plug-in cards from the mainframe before shipment. This should be done even if both the plug-in cards and the mainframe are to be shipped.
- 2. Use clean handling and anti-static techniques when removing and packaging the plug-in cards. Anti-static handling procedures are described in Section 6-3.
- 3. Wrap the plug-in cards in anti-static bags before packaging. A part number for anti-static bags is given in Table 5-1.
- 4. Attach a tag to the 3488A and any plug-in cards that are to be shipped. Mark the tag with the owners name, the model number of the unit or plug-in, the unit serial number, and the repair or service desired.
- 5. Carefully package the unit or plug-in card with an ample amount of cushioning material. Hewlett-Packard cannot assume any liability for damage caused in transit due to poor packaging. Preferrably, use the original shipping container and cushioning material
- 6. Attach a tag to the outside of the shipping container. Mark this tag with the owners name, the model number of the unit or plug-in, the serial number, and the repair or service desired.

2-19 Where To Ship The 3488A

For replacement or repair of defective assemblies, send the correctly packaged assembly to the nearest Hewlett-Packard Service Office. Hewlett-Packard Service Offices are listed at the back of this manual.

CHAPTER III OPERATING INFORMATION

Chapter III OPERATING INFORMATION

CHAPTER III

TABLE OF CONTENTS

	Page	Page
3-1	Introduction	3-29 Status3-11
3-2	Card Commands3-1	3-30 Store 3-12
3-3	Close	3-31 Recall
3-4	Open	3-32 Error
3-5	View	3-33 Revision (RO)3-13
3-6	Card Type3-2	3-34 Mask
3-7	Card Reset3-3	3-35 Overlap (RO)3-14
3-8	Card Pair3-3	3-36 Error Halt (RO)3-14
3-9	Card Monitor3-3	3-37 Display And Keyboard Commands3-14
3-10	Scan List3-4	3-38 Display (RO)3-14
3-11	Step	3-39 Display On/Off (RO)3-15
3-12	Channel	3-40 Key Mode (RO)3-15
3-13	System Read (RO)3-6	3-41 Lockout (RO)3-15
3-14	System Write (RO)3-6	3-42 Interface Defined Commands3-15
3-15	Digital I/O Card Commands3-6	3-43 Group Execute Trigger3-15
3-16	Digital Mode3-6	3-44 Device Clear3-15
3-17	Digital Write3-7	
3-18	Digital Read3-7	
3-19	Delay	LIST OF TABLES
3-20	Digital Binary Write (RO)3-8	
3-21	Digital Binary Read (RO)3-9	Table Page
3-22	3488A System Commands3-9	3-1 CARD TYPE Command Responses3-2
3-23	Reset	3-2 Card Monitor Mode3-4
3-24	Test	3-3 Mode and Polarity Specifiers3-7
3-25	Local (LO)3-10	3-4 Self-Test Failures3-10
3-26	Address (LO)3-10	3-5 Status Byte Values3-11
3-27	Service Request (LO)3-11	3-6 Error Conditions3-13
3-28	Identify (RO)3-11	3-7 SRQ Mask

CHAPTER III OPERATING INFORMATION

3-1 INTRODUCTION

This section provides a general overview of the 3488A's operating commands and front panel keys. An (RO) following a command description indicates that the command can be executed from Remote Only (from the computer). An (LO) following a command description indicates that the command can be executed from Local Only (from the 3488A keyboard). Commands that are not followed by (RO) or (LO) can be both remotely and locally executed.

3-2 CARD COMMANDS

The following commands apply to all plug-in cards with the exception of the 44475A Breadboard Card. The commands that apply to the Breadboard Card (SREAD and SWRITE) can be found in Sections 3-13 and 3-14.

3-3 Close

CLOSE <ch. address>, <ch. address>, < ch. address>, . . .]

The CLOSE command can be used to (1) close one or more channels on the 44470A, 44471A, 44472A, or 44473A cards and (2) "clear" (logic 0) one or more bits on the 44474A Digital I/O card.

When CLOSE is used with the Digital I/O card, the card must be in digital mode 1 or 2. An error condition will occur if the card is in digital mode 3, 4 or 5, and a CLOSE command is issued to it (refer to Digital Mode, Section 3-16).

Several channels or bits can be closed using one CLOSE command by listing their addresses in a series separated by commas. Channels or bits will be closed successively in the order that they appear in the list.

As an example of the CLOSE command, executing the following line will close channels or bits 2, 3 and 5 in slot 1 and channel or bit 5 in slot 3.

OUTPUT 709; "CLOSE 102,103,105,305"

3-4 Open

OPEN <ch. address>[, <ch. address>, <ch. address>...]

The OPEN command can be used to (1) open one or more channels on the 44470A, 44471A, 44472A, or 44473A cards and (2) "set" (logic 1) one or more bits on the 44474A Digital I/O card.

When OPEN is used with the Digital I/O card, the card must be in digital mode 1 or 2. An error condition will occur if the card is in digital mode 3, 4 or 5, and an OPEN command is issued to it (refer to Digital Mode, Section 3-16).

Several channels or bits can be opened using one OPEN command by listing their addresses in a series separated by commas. Channels or bits will be opened successively in the order that they appear in the list.

As an example of the OPEN command, executing the following line will open channels or bits 3 and 5 in slot 1 and channel or bit 7 in slot 3.

OUTPUT 709; "OPEN 103,105,307"

3-5 View

VIEW <ch. address>

The VIEW command can be used to verify the state of a particular channel on the 44470A, 44471A, 44472A, or 44473A cards and to verify the state of a particular bit on the 44474A Digital I/O card.

If the VIEW command is asserted from the 3488A's front panel, the 3488A displays the slot/channel address followed by the term "OPEN 0" or "CLOSED 1". If the VIEW command is asserted from the computer, only "OPEN 0" or "CLOSED 1" is returned (the slot/channel address is not returned).

For example, line 10 of the following program will view channel or bit 5 in slot 1. Line 20 will input the alphanumeric response from the 3488A into a string variable in the computer. Line 30 displays the string (either "OPEN 1" or "CLOSED 0")

10 OUTPUT 709;"VIEW 105" 20 ENTER 709; A\$ 30 DISP A\$

3-6 Card Type

CTYPE < slot >

The CARD TYPE command causes the 3488A to output the model name and number of the plug-in card in the specified slot. If the CARD TYPE command is executed from the 3488A's front panel, the display shows the slot in addition to the card's name and model number. Table 3-1 shows all possible card types and the corresponding 3488A responses to the CARD TYPE command.

Table 3-1 CARD TYPE Command Responses

CARD TYPE	DESCRIPTION
Slot is empty 10 Channel Multiplexer General Purpose Card High Frequency Scanner Matrix Card Digital I/O Card Breadboard Card	NO CARD 00000 RELAY MUX 44470 GP RELAY 44471 VHF SW 44472 MATRIX SW 44473 DIGITAL IO 44474 BREADBOARD 44475

For example, line 10 of the following program will verify the type of card in slot 3. Line 20 will enter the alphanumeric response from the 3488A into a string in the computer. Line 30 will display the string.

```
10 OUTPUT 709; "CTYPE 3" 20 ENTER 709; A$ 30 DISP A$
```

3.7 Card Reset

```
CRESET <slot>[,<slot>...]
```

The CARD RESET command can be used to reset (open) all channels or bits on a card in a particular slot. Only the card specified in the command will be reset. All other cards remain in their previous states.

Several cards can be reset using one CARD RESET command by listing their addresses in a series separated by commas. Cards will be reset successively in the order that they appear in the list.

When the 44474A Digital I/O Card is reset, it returns to its default mode and state. This means that the 16 data lines are set open (high state) and the card is in digital mode 1 (refer to Digital Mode, Section 3-16).

For example, executing the following line will reset the card in slot 2.

OUTPUT 709; "CRESET 2"

3-8 Card Pair

```
CPAIR < slot > , < slot >
```

The CARD PAIR command is used to group two cards of the same type together — effectively assigning both cards to both slot numbers. When a command is sent to one of the paired cards, that command is executed on both cards in succession — lowest slot number first. The card pair feature is especially useful when doing 4-wire scanning with 44470A 10 Channel Multiplexers.

Executing a CARD PAIR command will cancel any previous CARD PAIR command involving either of the two cards. It is possible, however, to have two sets of card pairs (e.g., 44470As in slots 1 and 2, and 44474As in slots 3 and 4).

As an example of the CARD PAIR command, line 10 in the following program will group the cards in slots 1 and 3. Line 20 will successively close channel or bit 5 on the cards in slots 1 and 3.

```
10 OUTPUT 709; "CPAIR 1,3" 20 OUTPUT 709; "CLOSE 105"
```

3.9 Card Monitor

CMON < slot >

The CARD MONITOR command causes the 3488A's display to monitor the state of the card in the specified slot. The display is updated whenever a command is issued to the specified slot.

Specifying slot 0 causes the card monitor mode to be cancelled.

Specifying a negative slot number (e.g., -1) initiates the monitor tracking mode. In this mode, the card in the slot where the last operation was performed will be monitored. Upon initiating the monitor tracking mode, the display will monitor the slot specified in the command (-1 = slot 1) until an operation is performed on another card.

Table 3-2 summarizes the various cards and their corresponding displays in the card monitor mode.

Table 3-2 Card Monitor Mode

	1 ————————————————————————————————————
CARD TYPE	DISPLAY
44470A Multiplexer	s:n,n,n,n,n,n,n,n,n
44471A General Purpose	s:n,n,n,n,n,n,n,n,n
44472A VHF Multiplexer	s: n,n,n,n,n,n,n,
44473A Matrix (monitoring rows)	s: ROW r ;c,c,c,c
44473A Matrix (monitoring columns)	s: r,r,r,r; COL c
44474A Digital I/O (monitoring decimal bytes)	s: H:bbb L:bbb
44474A Digital I/O (monitoring hexadecimal bytes)	s: H:bbbH L:bbbH
44474A Digital I/O (monitoring decimal word)	s: W:wwwwww
44474A Digital I/O (monitoring hexadecimal word) where:	s: W:wwwwH
s = slot number n = channel number r = row number c = column number bbb = digital data byte www = digital data word	

As an example of the CARD MONITOR command, executing the following line will cause the 3488A to monitor the card in slot 1.

OUTPUT 709; "CMON 1"

3-10 Scan List

SLIST [<ch. address>(,or -)<ch. address>...<ch. address>]

The SCAN LIST command establishes a list of up to 85 channels or bits and/or stored setups (see STORE, Section 3-30) to be stepped through in sequence. Addresses and stored setups

in the list are separated by commas. A series of contiguous channels or bits may be specified by entering the first address and the last address separated by a hyphen. Any gaps or improper card types included in this list will be ignored as long as the two numbers specified are valid.

After a scan list has been established, the STEP command will sequence through the list opening the previous channel or bit and closing the next.

In most cases, if the STEP command is executed after reaching the end of the scan list, a wraparound to the beginning of the list will occur. The number 0, however, may be inserted into the list to act as a "stop channel". When 0 is reached, the 3488A will open the last channel closed but will not close another channel. Also, the Channel Closed pulse will not be generated following the number 0 (refer to Digital Mode, Section 3-16)

The CHAN command may be used to specify a particular channel to close. If CHAN is used, any channel previously closed in the scan list will open and the channel specified in the CHAN command will close. Also, if the channel closed by the CHAN command is specified in the scan list, subsequent scanning with the STEP command will start with that channel. If the CHAN command is used to close a channel outside of the scan list and a STEP command is executed, the 3488A will open the channel closed by the CHAN command and close the first channel or bit specified in the scan list.

The commands OPEN, CLOSE, CRESET, and RECALL have no effect on the scan list although these commands can change the state of particular channels or bits included in the scan list. Conversely, STEP, CHAN and SLIST have no effect on channels closed by CLOSE, or RECALL if those channels do not exist in the scan list.

As an example, executing the following line will specify a scan list that starts with channel or bit 104, followed by 205, 300 through 309 and finally channel or bit 410.

OUTPUT 709; "SLIST 104,205,300-309,410"

3-11 Step

The STEP command is used to sequence through a scan list, opening the previous channel or bit in the list and closing the next. If STEP is executed and no scan list exists, the 3488A will generate an execution error; ERR 2.

As an example, line 10 of the following program sets up a scan list for channels or bits 00 through 09 on the card in slot number 1. Lines 20 and 40 establish a for/next loop which, in this case, will cycle through line 30 ten times. Line 30 executes the STEP command which will increment through the scan list one channel or bit at a time.

10 OUTPUT 709;"SLIST100-109"
20 FOR I = 1 TO 10
30 OUTPUT 709;"STEP"
40 NEXT I

3-12 Channel

CHAN [<ch. address>]

The CHAN command opens the last channel or bit closed by either the STEP command or the CHAN command and close the specified channel or bit. If no channel or bit is specified with CHAN, the 3488A will display or output to the interface the number of the last channel or bit closed by either STEP or CHAN. If no channel or bit has been closed since the last reset, executing the CHAN command will return the number 0.

As an example, executing the following line will open any channel or bit previously closed by CHAN or STEP and will close channel or bit 105.

OUTPUT 709; "CHAN 105"

3-13 System Read (RO)

SREAD < slot > < register >

The SREAD command allows any register on the Breadboard Card (44474A) to be read. The <slot > <register > specifier is a three-digit number where the slot and register specifiers are each one digit and are separated by a 0 (e.g., 405 corresponds to register 5 on the card in slot 4). The only error checks that are performed are on the slot number (must be 1 through 5) and the register number (must be 0 through 7). Reading a non-existent register will cause the instrument to respond with the value 255 which is the result of reading a floating data bus.

3-14 System Write (RO)

SWRITE <slot > < register > , < 8-bit data >

This command allows the user to write to any register on the Breadboard card (44475A). This command is subject to the same range-checking as discussed in the SREAD discussion above. Writing to a non-existent register is allowed — the data will be written to the backplane.

3-15 DIGITAL I/O CARD COMMANDS

The following commands apply only to the 44474A Digital I/O card.

3-16 Digital Mode

DMODE <slot > [, < mode >][, < polarity >][, < EI >]

The digital mode command is used to establish the handshake mode and polarity of the 44474A Digital I/O Card. It is also used to enable the External Increment and Channel Closed control line functions. The mode and polarity specifiers are shown in Table 3-3.

The External Increment and Channel Closed lines are enabled by a 1 in the EI specifier. They are disabled with an EI specifier of 0.

The contents of the DMODE register can be read by deleting the parameters and executing only: DMODE <slot>.

At power on, any 44474A Digital I/O cards will revert to the default static mode with high true logic levels on all data and control lines and with the External Increment and Channel Closed lines disabled.

Table 3.3 Mode and Polarity Specifiers

MODE TYPE	VALUE
Static 1 Static 2 R/W & Strobe Read & Write Strobe Handshake (no ext. incr.)	1 2 3 4 5
POLARITY	VALUE
Lower Byte Upper Byte PCTL Line PFLG Line I/O direction line	1 = low true 2 = low true 4 = low ready 8 = low ready 16 = low input mode

As an example of the DMODE command, executing the following line will place the Digital I/O card in slot 1 in the static 2 mode, with positive true logic (0), and EI/CC enabled (1).

OUTPUT 709; "DMODE1,2,0,1"

3-17 Digital Write

DWRITE <slot > <port >, <data > [, <data >]...

The Digital Write command establishes the port configuration of the 44474A Digital I/O card and writes data to a port. The port configuration is determined by the two digit number following the slot address in the Digital Write command. The port configurations are; port 00 — the low order eight bit byte (LO BYTE), port 01 — the high order eight bit byte (HI BYTE), and port 02 — the entire 16 bit word.

When writing to either of the 8-bit ports (port 00 or 01), the decimal value of the data must be between 0 and 255. When writing to the 16-bit port (port 02) the data must be between -32768 and +32767. Positive decimal values are written in standard binary format. Negative decimal values are written in 2's complement format.

As an example of writing to an 8-bit port, executing the following line will cause the decimal value 124 to be written to the HI BYTE.

OUTPUT 715; "DWRITE 501,124"

As an example of writing to the 16-bit port, executing the following line will write the decimal value 24561.

OUTPUT 715; "DWRITE 502,24561"

3-18 Digital Read

DREAD <slot > <port > [,# of times to read]

The Digital Read command reads the current status of the 44474A ports designated as inputs. The decimal value read back is equal to the sum of the weighted values of the bits that

are set. Refer to the Digital Write command for an explanation of the port specifier.

When in static mode 1 (see DMODE, Section 3-16), the Digital Read command reads the data being input to the data lines. When in static mode 2, the Digital Read command reads the data line outputs.

When reading an 8-bit port, the value read back will be between 0 and 255. When reading the 16-bit port, the value read back will be between -32768 and +32767.

If no value is specified for the number of readings, the specified port will be read only once. The maximum number of times a port can be read with one DREAD command is 32767. The 3488A must be in the overlap mode (see Section 3-35) in order to perform multiple readings.

As an example of the DREAD command, executing the following line will read the low order 8-bit port (on the 44474A card in slot 5) 10 times.

OUTPUT 709; "DREAD 500,10"

3-19 Delay

DELAY [<time in milliseconds>]

The DELAY command inserts a delay between the time that a channel is closed and the time that the next command is executed or the Channel Closed pulse is generated. This command is executed immediately after executing a CHAN or STEP command. The delay time may be specified from 0 to 32,767ms (32.767 seconds) in 1ms increments.

When the Channel Closed line is enabled (refer to Digital Mode, Section 3-16), the 44474A card will output a TTL-compatible pulse on this line immediately after a channel (on another card) or a bit has been closed. This is true whether the channel or bit was closed by the STEP or CHAN command, the interface TRIGGER command, or by the External Increment line.

If no time value is specified in the DELAY command, the 3488A will respond by displaying the current value of the delay time.

As an example, executing the following line will initiate a delay of 45ms (.045 seconds).

OUTPUT 715; "DELAY 45"

3-20 Digital Binary Write (RO)

DBW <slot><port>,#I<block data>

When the DBW command is received, the 3488A will interpret the data bytes that follow as a block of binary data. This data will be output according to the format setup for that card by the slot/port and the DMODE command. In 16-bit mode (port 2), the incoming data is interpreted as being most significant byte first. The transfer is completed by setting the HP-IB EOI line true at the same time as the last byte of data is transferred.

As an example, line 30 of the following program sets EOI true concurrent with the final character transfer. It is important to remember that the EOI formatting (line 30) varies ac-

cording to the computer used. The program shown works only on an HP series-80 computer. Line 40 contains the commands that will be sent to the 3488A. In this example, the ASCII values of A and B will be written to port 2 of the 44474A card in slot 5.

10 DIM A\$[40] 20 IOBUFFER A\$ 30 CONTROL 7,16;128 40 A\$ = "DBW 502,#IAB" 50 TRANSFER A\$ TO 709 FHS 60 END

3-21 Digital Binary Read (RO)

DBR < slot > < port > [, < number of items >]

In binary digital read mode, data items are read and output according to the format setup for the specified card by the slot/port and the DMODE command. If the 16-bit mode is specified, the data is sent most significant byte first. The data transfer is terminated by setting the HP-IB EOI line true concurrently with the last byte of data output. The maximum number of data items that may be specified by this command is 32,767. If more than one data item is specified, the 3488A must be in the overlap mode (see Section 3-35).

As an example, lines 30 and 40 of the following program reads port 2 of the 44474A card in slot 5. Line 50 uses the image specifiers % and K to set EOI true concurrent with the last character transfer. It is important to remember that the EOI formatting (line 50) varies according to the computer used. The program shown works only on an HP series-80 computer.

10 DIM A\$[40] 20 IOBUFFER A\$ 30 A\$ = "DBR 502,1" 40 TRANSFER A\$ TO 709 FHS 50 ENTER 709 USING "%,K";B\$ 60 DISP B\$ 70 END

3-22 3488A SYSTEM COMMANDS

3.23 Reset

The RESET command is used to reset the 3488A to its power-on (default) state. This includes the following sequence:

- 1. Identify all option cards and reset them (all channels or bits open).
- 2. Set all parameters to their default conditions.

If RESET is executed from the 3488A's front panel, the 3488A reads the HP-IB address switches to establish the talk and listen addresses.

If RESET is executed from the system computer, the HP-IB interface functions are not affected (i.e., the 3488A remains in the remote mode). If the front panel RESET key is pressed, the interface functions are reset.

The RESET command does not erase stored states (refer to STORE, Section 3-30).

As an example, executing the following line will reset the 3488A.

OUTPUT 709; "RESET"

3-24 Test

The Test command causes the 3488A to perform a series of self-tests. When the TEST key is pressed on the 3488A's front panel, the display test and the internal self-tests are performed. The display test turns-on every display segment (with the exception of the top dot on the colons) for the operator's inspection. It is up to the operator to verify proper display operation - no failure message exists for the display test. After the display test, the internal self-tests are performed. If all tests pass, the message "SELF TEST OK" appears in the display. If any tests fail, the message "FAILED nn" is displayed (where nn is the sum of the binary weighted values of the failed tests).

When TEST is executed from the system computer, only the internal tests are performed. The displayed messages indicating whether the tests passed or failed are the same as those described above. The results of the tests can also be read by the system computer — a value of 0 read by the computer indicates that all tests passed. Table 3-4 shows the possible self-test failures and their corresponding binary weighted values.

FAILURE	WEIGHTED VALUE
RAM	1
ROM	2
TIMER	4
HP-IB CHIP	8

Table 3-4 Self-Test Failures

As an example, line 10 of the following program initiates a remote self-test in the 3488A. Line 20 reads the numerical results of the tests, and line 30 displays those results.

10 OUTPUT 709;"TEST"

20 ENTER 709;A

30 DISP A

3-25 Local (LO)

This front panel key returns the 3488A to local operation. This causes any pending remote operations to be aborted. In addition, this command will reactivate the display if it has been turned off (see Display On/Off, Section 3-39).

3-26 Address (LO)

This front panel key causes the 3488A's address switch settings to be read and displayed and the address register to be updated. It is important to note that the 3488A will not automatically update its address register whenever the rear panel address switch settings are changed. This register will only be updated following a front panel RESET or ADDRESS command or when power is cycled to the 3488A.

3-27 Service Request (LO)

This front panel key asserts an SRQ over the HP-IB bus if the SRQ function is enabled (see MASK, Section 3-34). This key is active even when the 3488A is in the remote mode of operation.

3-28 Identify (RO)

If the 3488A is addressed to talk after receiving the ID? command, it will output the string "HP3488A". This allows the HP-IB address of the 3488A to be remotely identified.

As an example, line 10 of the following program will send the ID? command to the device at address 709. Line 20 reads the response of the unknown device. If the device is a 3488A, line 30 will display HP3488A.

10 OUTPUT 709;"ID?"
20 ENTER 709; A\$
30 DISP A\$

3-29 Status

The STATUS command reads the 3488A's status byte. The STATUS command returns a decimal value which is the sum of the binary weighted values of the individual bits that are set (condition is true).

Bits 0, 2, and 3 will be cleared after the STATUS command is executed. Bit 1 will be cleared only after the data is read from the 3488A, new data is requested, or the 3488A is reset. The Ready for Instructions bit (bit 4) will be cleared whenever the 3488A is busy executing instructions. For this reason, bit 4 will always be clear when STATUS is executed. The SPOLL command should be used to determine when the 3488A is ready for instructions. The Error bit (bit 5) will only be cleared after the Error Register is read. Bit 6, RQS, will be cleared after a STATUS command if the condition that caused bit 6 to be set is cleared. Table 3-5 shows the various bits of the status byte and their corresponding descriptions and binary weighted values.

Table 3-5 Status Byte Values

ВІТ	WEIGHTED VALUE	DEFINITION
0	1	End of scan sequence
1	2	Output available
2	4	Power-on SRQ asserted
3 4	8	Front panel SRQ key pressed
	16	Ready for instructions
5	32	Error
6	64	RQS
7	128	Not used (always 0)

As an example, line 10 of the following program will read the 3488A's status byte. Line 20 enters that reading into the computer. Line 30 displays the reading.

10 OUTPUT 709; "STATUS"

20 ENTER 709; A

30 DISP A

3-30 Store

STORE < register number 1 to 40>

The STORE command is used to record the current state of the 3488A and any plug-in cards it contains (closed channels, static digital output states, etc.). The state is stored in the register number specified in the command. The stored setup can be used to easily return the 3488A to a particular state and it can be used as part of a scan list.

The states of 44474A Digital I/O cards that are not in the static mode will be ignored.

Resetting the 3488A does not affect stored setups.

As an example of storing a state, executing the following line will close channels or bits 3 and 5 in slot 1 and channels or bits 3, 4 and 5 in slot 2. After closing these channels, the state of the 3488A will be stored in register 25. The state can be recalled by using the RECALL command (see Section 3-31).

OUTPUT 709; "CLOSE 103,105,203,204,205; STORE 25"

3-31 Recall

RECALL < register number 1 to 40>

Once a setup has been stored, the RECALL command can be used to re-initiate that setup. When a stored state is recalled, the 3488A reconfigures itself, one slot at a time, beginning with slot 1 channel or bit 00. Only the states of channels and static digital outputs are recalled.

If no state has been stored in the recalled register, an error will result and the 3488A will send a Service Request if SRQ is enabled (see MASK, Section 3-34). In this situation, the 3488A will remain in its previous state.

As an example of the RECALL command, executing the following line will recall the contents of register number 25.

OUTPUT 709; "RECALL 25"

3-32 Error

The ERROR command allows the 3488As error register to be read. The decimal value read is equal to the sum of the binary weighted values of the error conditions as defined in Table 3-6.

As an example, line 10 in the following program reads the 3488A's error register. Line 20 enters the error register value into a variable in the computer. Line 30 displays the value.

10 OUTPUT 709;"ERROR"
20 ENTER 709;A

30 DISP A

Table 3-6 Error Conditions

WEIGHTED	ERROR
VALUE	Condition
1 2 4 8 16	Syntax Error Execution Error possible meanings include: a. Parameter out of range b. Card type mismatch c. Attempt to access a nonexistent stored state or scan list Hardware Trigger Too Fast Logic Failure Power Supply Failure

3-33 Revison (RO)

REV

This command outputs the current ROM revision date using a four-digit code. The first two digits specify the year or the latest update minus 60 (since this coding scheme was introduced in 1960), and the next two digits specify the week of the update. Thus, the code for ROM's updated in week 34 of 1983 would be 2334.

As an example, line 10 of the following program reads the current ROM code. Line 20 inputs that code into the computer and line 30 displays the code.

10 OUTPUT 709"REV" 20 ENTER 709;A 30 DISP A

3-34 Mask

MASK < decimal value >

The MASK command allows the SRQ mask to be set for various conditions. The decimal value loaded into the mask is equal to the sum of the binary weighted values of the condition that will cause an SRQ interrupt. The possible conditions and their corresponding binary weighted values are shown in Table 3-7.

Table 3.7 SRQ Mask

MASK. BIT	WEIGHTED VALUE	DESCRIPTION
0	1	End of scan sequence
1	2	Output available
2	4	Power-on SRQ true
3	8	Front panel SRQ key pressed
4	16	Ready for instructions
5	32	Error
6	64	RQS (request service)
7	128	Not used

If no value is included with the MASK command, the 3488A will display or output to the computer the current value of its SRQ mask.

As an example, executing the following line will set the mask enabling the front panel SRQ key function.

OUTPUT 709; "MASK 8"

3-35 Overlap (RO)

OLAP < 1 or 0 >

In the overlap disabled mode (default, OLAP 0), the 3488A holds up HP-IB I/O communications while it processes received messages. If overlap is enabled, (OLAP 1), the 3488A will release the HP-IB as soon as the command message is received. Overlap enabled allows faster I/O throughput but does not guarantee sequential operation of other devices on the bus (as normally occurs when overlap is disabled). When overlap is enabled, the user should monitor bit 4 in the 3488A's status register (using the serial poll command) to help ensure sequential operation of other instruments on the HP-IB interface.

The overlap function only applies to commands received by the 3488A, not to data sent by the 3488A. The 3488A must be in the overlap mode in order to perform multiple readings using the DREAD and DBR commands.

3-36 Error Halt (RO)

EHALT <0 or 1>

This command is used to enable (EHALT 1) the stop-on-error mode of the 3488A. When in this mode, the 3488A will lock-up the HP-IB interface whenever it discovers that an error has occurred (see ERROR, Section 3-32).

NOTE

Once the HP-IB has locked-up the user must press the local key followed by the reset key or cycle power to the 3488A. The computer and the HP-IB interface must also be reset.

The default error condition (EHALT 0) allows normal HP-IB communication following an error.

3-37 DISPLAY AND KEYBOARD COMMANDS

3-38 Display (R0)

DISP < ASCII character string >

The DISP command allows messages up to 127 characters long to be written to the 3488A's display. Any characters in excess of 127 will be discarded. Any printable ASCII character (decimal value of 32 and greater) can be displayed except for colons (:), semicolons (;), pound signs (#), line feeds (lf), and carriage returns (cr) which will cause errors. Quotation marks within the ASCII string are ignored.

3-39 Display On/Off (RO)

The DOFF command allows the 3488A display to be disabled. This allows the 3488A to operate faster since it no longer needs to update the display. After DOFF has been executed, the display will show a series of hyphens and will eventually turn off. The hyphen series may stay in the display for as long as 15 minutes before the display actually clears.

The display can be re-enabled by executing the DON command or by pressing the LOCAL key.

The DON command also can be used to clear the display from remote.

3-40 Key Mode (RO)

When in the key mode the 3488A displays the term "KEY:" and scans the front panel keyboard matrix in search of a key closure. When a key is pressed, the 3488A sends a two-digit code to its display and to its output buffer. The first digit corresponds to the row and the second digit corresponds to the column of the key closure. To prevent a potential interface hangup, the user should monitor the Output Available bit in the status register (using the serial poll command) to determine when a key has been closed. The 3488A will not read a new key closure until the previous closure has been read by the controller.

3-41 Lockout (RO)

The LOCK command is equivalent to sending the local lockout command from the computer. Locking out the keyboard prevents the keyboard from being scanned thus permitting faster operation.

3-42 INTERFACE DEFINED COMMANDS

The 3488A will respond to the following HP-IB commands.

3-43 Group Execute Trigger

The GET command is interpreted as a STEP command by the 3488A (see STEP, Section 3-11).

3-44 Device Clear

The DCL and SDC commands are interpreted as a RESET command by the 3488A.

Chapter IV OPERATION VERIFICATION

CHAPTER IV

TABLE OF CONTENTS

	Page	
4-1	Introduction	l
4-2	General Information4-1	l
4-3	Equipment Required4-2	
4-4	Operation Verification Tests4-2	
4-5	Mainframe Self-Test4-2	
4-7	HP-IB Test4-3	ţ
4-10		
4-12	44470A 10 Channel Multiplexer Test 4-6	Ś
4-14	44471A General Purpose Card Test4-8	3
4-16)
4-18		
4-20	44474A Digital I/O Card Tests4-15	į
	LIST OF TABLES	
Tab	Da	
4-1	- 75	;
4-1		
	24VVA Varibaard Last	
4-2	3488A Keyboard Test4-5	,
4-2	3488A Keyboard Test4-5	,
4-2	LIST OF ILLUSTRATIONS	,
4-2 Figu	LIST OF ILLUSTRATIONS	
	LIST OF ILLUSTRATIONS Tre Page	2
Figu 4-1	LIST OF ILLUSTRATIONS are Page 44470A Test Configuration	2
Figu 4-1 4-2	LIST OF ILLUSTRATIONS Tre Page	2 6 8

CHAPTER IV OPERATION VERIFICATION

4-1 INTRODUCTION

Properly executing the following Operation Verification Tests will provide a high confidence level (approximately 90%) that the 3488A and its associated plug-in cards are operating within their published specifications.

The primary purpose of these tests is to provide a relatively fast and easy method to determine the operability of the 3488A and any plug-in cards it may contain (with the exception of the 44475A Breadboard card, for which there are no tests).

NOTE

A more in-depth, higher confidence level procedure for testing an individual plug-in card can be found in that card's chapter of this manual.

A secondary purpose of the Operation Verification Tests is to serve as the "main directory" to the 3488A service documentation. The test results will direct the user to the appropriate supplemental service documentation - whether that be troubleshooting information or merely more extensive specification testing.

4-2 GENERAL INFORMATION

The Operation Verification Tests should be performed whenever it is desired to determine whether the 3488A and its plug-in cards are actually operating. For example, these tests can be used as an "incoming inspection procedure" when the 3488A Switch/Control Unit is initially received, or they can be used to verify a suspected failure after the unit has been installed into the system. Additionally, after a failure has been detected and repaired, these tests can be used to confirm that the repairs have accomplished their purpose. Whatever the case, the Operation Verification Tests must always be performed prior to conducting any of the plug-in card performance tests (located in Chapters 8, 9, 10, 11, and 12).

A "test fixture" is required for each plug-in card (with the exception of the VHF Switch card) to simplify testing and to act as an interface between the card and a multimeter. This fixture can be either of the following two types:

- a. A test fixture is available from Hewlett-Packard as an accessory to the 3488A (HP part number 03488-66501). This fixture can be used to test any of the four plug-in cards (one card at a time) that require a test fixture.
- b. A test fixture can be made for each plug-in card using a removable wiring block configured as described in the appropriate card's Test Fixture section. This method requires that a separate test fixture be configured for each type of plug-in card to be tested.

The procedures in this section are written to be compatible with either type of test fixture.

4-3 EQUIPMENT REQUIRED

Digital Multimeter - Hewlett Packard 3478A or equivalent

Test Fixture (refer to Section 4-2)

Computer - Hewlett Packard Series-80

HP-IB Interface - Hewlett Packard 82937A

4-4 OPERATION VERIFICATION TESTS

The Operation Verification Tests are divided into the following seven subsections:

Mainframe Self-Test, Section 4-5

HP-IB Test, Section 4-7

44470A 10 Channel Multiplexer Tests, Section 4-13

44471A 10 Channel General Purpose Card Test, Section 4-14

44472A Dual 4 Channel VHF Switch Card Test, Section 4-16

44473A 4x4 Matrix Switch Card Test, Section 4-18

44474A 16 Channel Digital I/O Card Tests, Section 4-20

Always perform the mainframe self-test (Section 4-5) and the HP-IB test (Section 4-7) before performing any of the remaining plug-in card tests. Doing so will ensure the most comprehensive approach toward isolating a problem — should a problem exist.

4-5 Mainframe Self-Test

The mainframe self-test verifies the operation of the display circuitry and a large part of the micro-processor related circuitry (RAM, ROM, etc) on the Controller pc board. It does not, however, assess the operability of the backplane or the drivers contained in the mainframe. The operability of the backplane and drivers will not be tested until the individual plug-in card tests are performed.

It is important to remember that if the self-test passes, it does not, in itself, ensure proper instrument operation. A self-test failure, however, does indicate an instrument malfunction.

- 1. Use the 3488A's front panel keys to initiate a self-test as follows:
 - a. Press the LOCAL key.
 - b. Press the TEST key.

The self-test should start by turning on all display segments (with the exception of the top dot of the colon). Following the display test, the internal tests are performed. If all internal tests pass, SELF TEST OK will be displayed. If a test fails, FAILED nn will be displayed (where nn is the sum of the binary weighted values of the failed tests). For example, a FAIL-ED 05 display indicates that the RAM test (value = 1) and the TIMER test (value = 4) have failed. The self-test failure modes and their corresponding binary weighted values are shown in Table 4-1.

Table 4-1 Self-Test Failure Modes

FAILURE	WEIGHTED VALUE
RAM	1
ROM	2
TIMER	4
HP-IB CHIP	8

4-6 Corrective Action

If, during the display test, a segment or segments malfunctioned, a problem exists on the Controller pc board or the Display assembly. Refer to Chapter 6 for problem isolation information.

If any of the internal tests failed, the Controller pc board is malfunctioning. Refer to Chapter 6 for problem isolation information.

4-7 HP-IB Test

- 1. Connect the computer and the HP-IB interface to the 3488A.
- 2. Load and run the following program:

```
10 A = 709
```

20 SET TIMEOUT 7;2000

30 ON TIMEOUT 7 GOTO 370

40 RESET 7

50 OUTPUT A ;"TEST"

60 ENTER A; B

70 IF B#0 THEN 290

80 OUTPUT A ;"MASK 0"

90 OUTPUT A ;"MASK"

100 ENTER A; B

110 IF B#0 THEN 350

120 OUTPUT A ;"MASK 128"

130 OUTPUT A ;"MASK"

140 ENTER A; B

150 IF B#128 THEN 350

160 ON INTR 7 GOTO 220

170 ENABLE INTR 7;8

180 OUTPUT A ;"MASK2"

190 OUTPUT A ;"ID?"

200 WAIT 1000

(CONTINUED ON NEXT PAGE)

```
210 GOTO 390
220 OFF INTR 7
230 STATUS 7,1; B
240 ENTER A; A$
250 OUTPUT A ;"STATUS"
260 ENTER A : B
270 PRINT "HP3488A PASSED HP-IB TEST"
280 END
290 PRINT "HP3488A HAS FAILED;", "SELF-TEST"
300 IF BIT(B,0) THEN PRINT "FAIL CODE 1 (RAM)"
310 IF BIT(B,1) THEN PRINT "FAIL CODE 2 (ROM)"
320 IF BIT(B,2) THEN PRINT "FAIL CODE 4 (TIMER)"
330 IF BIT(B,3) THEN PRINT "FAIL CODE 8 (I/O CHIP)"
340 END
350 PRINT "HP3488A HAS FAILED THE SERVICE REQUEST MASK TEST"
360 END
370 PRINT "HP3488A DID NOT RESPOND. HP-IB TIMEOUT ERROR OCCURRED."
380 END
390 PRINT "HP3488A HAS FAILED THE SRQ TEST."
400 END
```

4-8 Program Description

Line 10 defines the 3488A's address (the factory preset address, 709, is shown).

Lines 20 and 30 set a time limit in which the HP-IB can respond. If no response occurs within 2 seconds, line 370 will print the HP-IB timeout error.

Lines 50 through 70 initiate a remote self-test and read the results. In case of a self-test failure, lines 290 through 330 decode and print the failure information.

Lines 80 through 150 check the service request mask by setting the mask to a certain state, reading the state back, and comparing the two states. A service request mask failure is printed by line 350.

Lines 160 through 260 check the SRQ function. A failure is printed by line 390.

If the remote self-test, the service request mask test, and the SRQ test pass, line 270 prints a message indicating that all of the HP-IB tests have passed.

4-9 Corrective Action

If any of the HP-IB tests fail, the HP-IB circuitry on the Controller pc board is malfunctioning (assuming that the computer and HP-IB interface are operating properly). Contact an HP Sales and Service Office for Controller board replacement information.

4-10 Keyboard Test

This test takes advantage of the 3488A's keymode feature. When in the keymode, the 3488A displays the term KEY: and scans the front panel keyboard matrix in search of a key closure. After a key is closed, a two digit number will be sent to the 3488A's output buffer and will

appear following the term KEY: in the display. The first digit of this number represents the row, and the second digit represents the column of the closed key. Thus, by (1) placing the 3488A in the keymode, (2) pressing the front panel keys and, (3) observing the displayed number, the operation of the keyboard can be tested.

1. Load and run the following computer program:

10 OUTPUT 709"KEY1" 20 ENTER 709;A 30 GOTO 20

2. Successively press every key on the 3488A's keyboard and verify that the displayed response corresponds to the number shown in Table 4-2.

DISPLAYED RESPONSE DISPLAYED RESPONSE KEY CLOSURE **KEY CLOSURE** CARD PAIR 36 BACK SPACE 11 9 12 STORE 37 38 VIEW 8 13 **EXEC** 41 14 42 WRITE 15 43 SCAN LIST 16 CARD RESET 17 0 44 45 DELAY CLOSE 18 46 CLEAR DISPLAY 21 STEP 47 22 RECALL 6 CARD MON 48 5 23 4 24 54 51 READ 25 SYNTAX 57 CHAN 26 CARD TYPE 27 **TEST** 56 28 58 RESET OPEN ERROR REG 31 SRQ 64 MASK 61 3 32 67 2 33 STATUS 34 ADRS 66 68 MODE LOCAL 35

Table 4-2 3488A Keyboard Test

- 3. Use the HP 80-series controller to remove the 3488A from the keymode as follows:
- a. Press the PAUSE key (it may be necessary to press one of the 3488A's keys to regain control of the computer).
 - b. Type: OUTPUT 709 "KEY 0".
 - c. Press the ENDLINE key.

4-11 Corrective Action

If one or more keys failed the above test, a problem exists in either the Keyboard Assembly or the Controller Assembly. Refer to Chapter 6 for problem isolation information.

4-12 44470A 10 Channel Multiplexer Test

The 10 Channel Multiplexer contains a 10 channel array of double-pole single-throw (DPST) relays.* Each channel has a low line and a high line which are switched in unison. The test fixture (see Figure 4-1) consists of (1) a short circuit between all of the low lines, (2) a short circuit between all of the high lines, and (3) a short circuit between the two common lines. With the test fixture installed, and an ohmmeter connected between the shorted common lines and either the shorted low lines or the shorted high lines, the card is tested by successively closing each relay while checking for an indication of the closure on the ohmmeter.

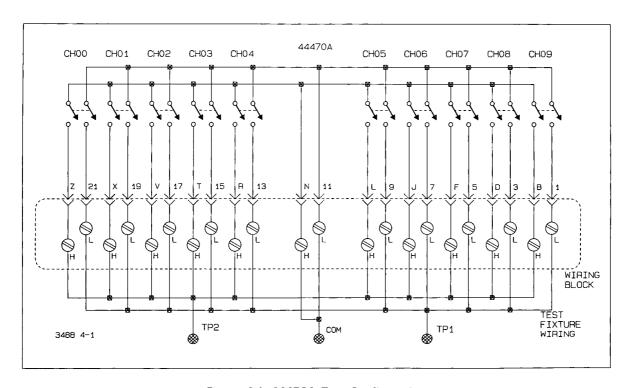


Figure 4-1 44470A Test Configuration

WARNING

If the Switch/Control Unit is currently installed in a system, it must be disconnected from the system in the following procedure. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected.

The user must take the necessary precautions to prevent the above from happening before disconnecting the wiring or the wiring block.

^{*} These relays also contain a separate set of "sense contacts" that are used by the 3488A to verify relay states.

- 1. Remove the wiring block from the 44470A's rear edge connector.
- 2. Install the test fixture onto the 44470A's rear edge connector.

NOTE

If the HP 03488-66501 test fixture is being used, set its switch to the 1 position.

- 3. Set the multimeter to measure ohms. "Zero" the multimeter.
- 4. Using the 3488A's front panel keys, specify the card monitor mode and the scan list as follows:
 - a. Press the LOCAL key.
- b. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the card under test.
 - c. Press the EXECUTE key.
- d. Press the SCAN LIST key followed by X00-X09 (where X is the slot occupied by the card under test and 00-09 are the relays to be scanned).
 - e. Press the EXECUTE key.
- 5. LOW LINES TEST: Connect the multimeter between the COM terminal and the TP1 terminal on the test fixture.
- 6. Using the 3488A's front panel keys, reset the 44470A as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44470A.
 - b. Press the EXECUTE key.

The multimeter should indicate that all relays are open (very high resistance or overload indication).

NOTE

If the multimeter is indicating a very low resistance, one or more of the relays is remaining closed. In this situation, the 3488A should generate an error condition (ERR 8: LOGIC) signifying that one or more of its relay sense lines is closed. Refer to Chapter 6 for problem isolation information.

7. Successively press the STEP key while observing the displays on the 3488A and the multimeter. The 3488A's display should show a number corresponding to the closed relay. This number will be incremented one digit every time the step key is pressed (one full cycle starts at 0 and ends at 9). The multimeter should display a resistance reading of less than 2 ohms for each relay.

The 3488A will generate an error condition (ERR 8: LOGIC) if one or more of its sense contacts is indicating that an improper relay state exists during the execution of the scan list.

8. LOW LINES TEST: Connect the multimeter between the COM terminal and the TP2 terminal on the test fixture. Repeat steps 6 and 7.

4-13 Corrective Action

- a. If during step 7, one or more relays did not close as described, a problem exists either in the mainframe or the 44470A. Refer to Chapter 6 for problem isolation information.
- b. If during step 7, the appropriate relays closed, but one or more of the resistances was greater than 2 ohms, the corresponding relay(s) are failing. Refer to Chapter 8 for relay replacement information.

If the above test passed, and further specification testing is desired, refer to the 44470A Performance Tests in Chapter 8.

4-14 44471A General Purpose Card Test

The General Purpose Relay Card contains a 10 channel array of single-pole single-throw (SPST) relays.* The test fixture (see Figure 4-2) short circuits all of the inputs together and short circuits all of the outputs together. Thus, by connecting an ohmmeter between the shorted inputs and the shorted outputs, the card is tested by successively closing each relay while checking for an indication of the closure on the ohmmeter.

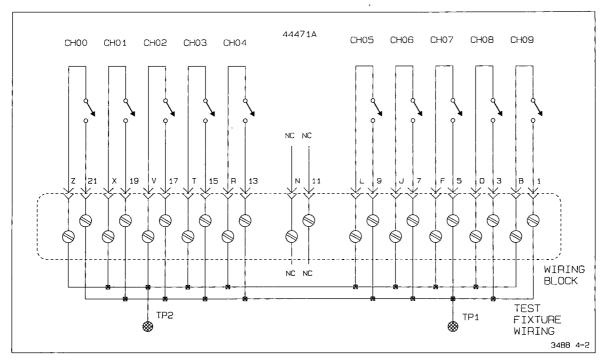


Figure 4-2 44471A Test Configuration

^{*} These relays also contain a separate set of "sense contacts" that are used by the 3488A to verify relay states.

WARNING

If the Switch/Control Unit is currently installed in a system, it must be disconnected from the system in the following procedure. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected.

The user must take the necessary precautions to prevent the above from happening before disconnecting the wiring or the wiring block.

- 1. Remove the wiring block from the 44471A's rear edge connector.
- 2. Install the test fixture onto the 44471A's rear edge connector.

NOTE

If the HP 03488-66501 test fixture is being used, its switch must be set to the 1 position.

- 3. Set the multimeter to measure ohms. "Zero" the multimeter. Connect the multimeter between the TP1 terminal and the TP2 terminal on the test fixture.
- 4. Using the 3488A's front panel keys, reset the 44471A as follows:
 - a. Press the LOCAL key.
- b. Press the CARD RESET key followed by the numeral key (1-5) corresponding to the slot occupied by the 44471A.
 - c. Press the EXECUTE key.

The multimeter should indicate that all relays are open (very high resistance or an overload indication).

NOTE

If the multimeter is indicating a very low resistance, one or more of the relays is remaining closed. In this situation, the 3488A should generate an error condition (ERR 8: LOGIC) signifying that one or more of its relay sense lines is closed. Refer to Chapter 6 for problem isolation information.

- 5. Using the 3488A's front panel, specify card monitor mode and the scan list as follows:
- a. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the card under test.

- b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X09 (where X is the slot occupied by the card under test and 00-09 are the relays to be scanned).
 - d. Press the EXECUTE key.
- 6. Successively press the STEP key while observing the displays on the 3488A and the multimeter. The 3488A's display should show a number corresponding to the closed relay. This number will be incremented one digit every time the step key is pressed (starting at 0 and incrementing up to 9). The multimeter should display a resistance reading of less than 2 ohms for each relay.

NOTE

The 3488A will generate an error condition (ERR 8:LOGIC) if one or more of its sense contacts is indicating an improper relay state during execution of the scan list.

4-15 Corrective Action

- a. If during step 6, one or more relays did not open or close as described, a problem exists either in the mainframe or the 44471A. Refer to Chapter 6 for problem isolation information.
- b. If during step 6, the relays closed as described, but one or more of the resistances was greater than 2 ohms, the corresponding relay(s) are failing. Refer to Chapter 9 for relay replacement information.

If the preceding test passed, and further specification testing is desired, refer to the 44471A Performance Tests in Chapter 9.

4-16 44472A VHF Switch Card Test

The VHF Switch Card consists of two 4 channel to 1 channel multiplexers with BNC connections. Only the center conductor of each channel is switched. The outer conductors (shield) of all channels in a particular multiplexer are connected together and unswitched. Each channel is tested by (1) connecting an ohmmeter between the center conductor of the common connector and the center conductor of the channel to be tested, (2) closing the channel, and (3) checking for the indication of the closure on the ohmmeter. This process is repeated until all channels of both multiplexers have been tested.

WARNING

If the Switch/Control Unit is currently installed in a system, it must be disconnected from the system in the following procedure. This presents two potential safety hazards:

a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).

b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected.

The user should take the necessary precautions to prevent the above from happening before disconnecting any wiring.

- 1. Remove any external wiring from the rear of the 44472A.
- 2. Set the multimeter to measure ohms. "Zero" the multimeter.
- 3. Using the 3488A front panel keys, reset the 44472A, establish the card monitor mode, and setup a scan list as follows:
 - a. Press the LOCAL key.
- b. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - c. Press the EXECUTE key.
- d. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - e. Press the EXECUTE key.
- f. Press the SCAN LIST key followed by X00-X13 (where X is the slot occupied by the card under test and 00 through 13 are the channels to be scanned).
 - g. Press the EXECUTE key.
- 4. MULTIPLEXER #0 TEST: Connect the multimeter between the center conductor of the COM 0 connector and the center conductor of the channel under test (channel 00 to start). The multimeter should indicate that the channel is open (very high resistance or an overload indication).

NOTE

If the multimeter is indicating a very low resistance, the channel is remaining closed for some reason. Refer to Chapter 6 for problem isolation informaltion.

- 5. Press the STEP key. The multimeter should display a resistance reading of less than 1 ohm.
- 6. Repeat steps 4 and 5 for channels 01, 02, and 03.
- 7. Use the 3488A front panel keys to reset the 44472A as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - b. Press the EXECUTE key.

8. MULTIPLEXER #1 TEST: Connect the multimeter between the center conductor of the COM 1 connector and the center conductor of the channel under test (channel 10 to start). The multimeter should indicate that the channel is open (very high resistance).

NOTE

If the multimer is indicating a very low resistance, the channel is remaining closed for some reason. Refer to Chapter 6 for problem isolation information.

- 9. Press the STEP key until the channel under test appears in the 3488A's display. The multimeter should display a resistance reading of less than 1 ohm.
- 10. Repeat steps 8 and 9 for channels 11, 12, and 13.

4-17 Corrective Action

- a. If during steps 5 or 9, one or more channels did not close as described, a problem exists in either the mainframe or the 44472A plug-in card. Refer to Chapter 6 for problem isolation information.
- b. If during steps 5 or 9, the channels closed but one or more of the resistances was greater than 1 ohm, the relays in the corresponding channel(s) are failing. Refer to Chapter 10 for relay replacement information.

If the preceding test passed, and further specification testing is desired, refer to the 44472A Performance Tests in Chapter 10.

4-18 44473A Matrix Card Test

The Matrix Card consists of 16 double-pole single-throw (DPST) relays arranged in a 4 channel by 4 channel switching matrix.* As shown in Figure 4-3, each channel has a low line and a high line which are switched in unison. The test fixture (see Figure 4-3) consists of (1) a short circuit between all of the low line inputs, (2) a short circuit between all of the low line outputs, (3) a short circuit between all of the high line inputs, and (4) a short circuit between all of the high line outputs. With the test fixture installed, and an ohmmeter connected between the inputs and outputs of either the low lines or high lines, the card is tested by successively closing each relay while checking for the indication of a closure with the ohmmeter.

WARNING

If the Switch/Control Unit is currently installed in a system, it must be disconnected from the system in the following procedures. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected.

The user should take the necessary precautions to prevent the above from happening before disconnecting the wiring or the wiring block.

* These relays also contain a separate set of "sense contacts" that are used by the 3488A to verify relay states.

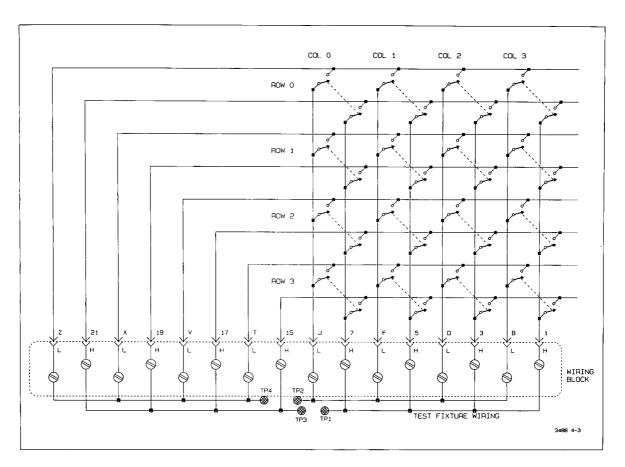


Figure 4-3 Matrix Card Test Configuration

- 1. Remove the wiring block from the 44473A's rear edge connector.
- 2. Install the test fixture onto the 44473A's rear edge connector.

NOTE

If the HP 03488-66501 test fixture is being used, set its switch to the 0 position.

- 3. Set the multimeter to measure ohms. "Zero" the multimeter.
- 4. Using the 3488A's front panel, reset the 44473A as follows:
 - a. Press the LOCAL key.
- b. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44473A.
 - c. Press the EXECUTE key.
- 5. LOW LINES TEST: Connect the multimeter between the TP2 terminal and the TP4 terminal on the test fixture. The multimeter should indicate that all relays are open (very high resistance or overload indication).

NOTE

If the multimeter is indicating a very low resistance, one or more of the relays is remaining closed. In this situation, the 3488A should generate an error condition (ERR 8: LOGIC) signifying that one or more of its relay sense lines is closed. Refer to Chapter 6 for problem isolation information.

- 6. Using the 3488A's front panel keys, place the 3488A in the card monitor mode and specify the scan list as follows:
- a. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the card under test.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X33 (where X is the slot occupied by the card under test).
 - d. Press the EXECUTE key.
- 7. Successively press the STEP key while observing the displays on the 3488A and the multimeter. The 3488A's display should show a two digit number corresponding to the closed relay. The first digit indicates the row and the second digit indicates the column of the relay matrix. The column digit will be incremented by one every time the STEP key is pressed (starting at 0 and ending at 3). After stepping through every column in a row, the column digit will reset to 0 and the row digit will be incremented by one (starting at 0 and ending at 3). Thus, every relay in the matrix can be checked by repeatedly pressing the STEP key. The multimeter should display a resistance reading of less than 3 ohms for each relay.

NOTE

The 3488A will generate an error condition (ERR 8: LOGIC) if one or more of its sense contacts indicate an improper relay state during the execution of the scan list.

- 8. Use the 3488A front panel keys to reset the 44473A as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44473A.
 - b. Press the EXECUTE key.
- 9. HIGH LINES TEST: Connect the multimeter between the TP1 terminal and the TP3 terminal on the test fixture. The multimeter should indicate that all relays are open (infinite resistance).

NOTE

If the multimeter is indicating a very low resistance, one or more of the relays is remaining closed for some reason. Refer to Chapter 6 for problem isolation information. 10. Successively press the STEP key while observing the displays on the 3488A and the multimeter (as was done in step 7). The 3488A's display should show a number corresponding to the closed relay. The multimeter should display a resistance reading of less than 3 ohms for each relay.

4-19 Corrective Action

- a. If during steps 7 or 10, one or more relays did not open or close as described, a problem exists either in the mainframe or the 44473A. Refer to Chapter 6 for problem isolation information.
- b. If during steps 7 or 10, the relays closed as described but one or more of the resistances was greater than 3 ohms, the corresponding relay(s) are failing. Refer to Chapter 11 for relay replacement information.

If the preceding test passed, and further specification testing is desired, refer to the 44473A Performance Tests in Chapter 11.

4-20 44474A Digital I/O Card Tests

The 44474A Digital I/O card is made up of 16 bidirectional data lines and 4 control lines. The test for this card consists of (1) a data line input/output test, (2) a Channel Closed/External Increment test, and (3) an IO/WR and PCTL/RD line test. The first test uses the test fixture to connect the eight LO BYTE data lines to the eight HI BYTE data lines. Thus, by writing to one set of data lines and reading the data from the other set, the operation of the data lines and the continuity of the fuses and connectors can be verified. The second test uses the test fixture to connect the CHAN CLOSED line to the PFLG/EXT INC line. This test relys on the self-triggering action of these lines to continuously advance through a scan list - thereby testing the lines. The third test checks the operation of the IO/WR and PCTL/RD control lines by individually connecting each line to a dc voltmeter, using the 3488A front panel keys to change the state of the line, and verifying the state change on the voltmeter.

NOTE

Whenever the term X is encountered in the following steps, it must be replaced by the number corresponding to the 3488A slot occupied by the 44474A.

- 1. INPUT AND OUTPUT TESTS: Install the test fixture onto the 44474A's rear edge connector.
- 2. Reset the 44474A as follows:
 - a. Press the LOCAL key.
 - b. Press the CARD RESET key followed by X.
 - c. Press the EXECUTE key.
- 3. Write a binary 10101010 to the LO BYTE (in order to open every other line) as follows:

- a. Press the WRITE key followed by X00,170.
- b. Press the EXECUTE key.
- 4. Verify that the data has been transferred to the HI BYTE as follows:
 - a. Press the READ key followed by X01.
 - b. Press the EXECUTE key.

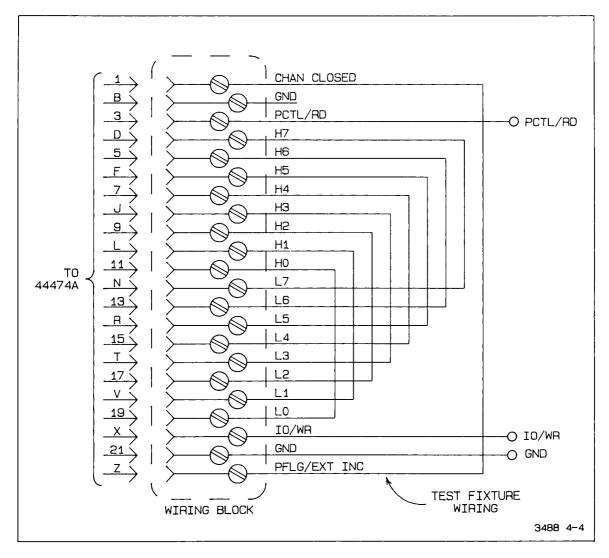


Figure 4-4 44474A Test Fixture

The 3488A display should read +00170 (a binary 10101010). If it does not, refer to Chapter 6 for problem isolation information.

- 5. Write a binary 01010101 to the LO BYTE (in order to open every other line) as follows:
 - a. Press the WRITE key followed by X00,85.
 - b. Press the EXECUTE key.

- 6. Verify that the data has been transferred to the HI BYTE as follows:
 - a. Press the READ key followed by X01.
 - b. Press the EXECUTE key.

The 3488A display should read +00085 (a binary 01010101). If it does not, refer to Chapter 6 for problem isolation information.

- 7. Write a binary 10101010 to the HI BYTE (in order to open every other line) as follows:
 - a. Press the WRITE key followed by X01,170.
 - b. Press the EXECUTE key.
- 8. Verify that the data has been transferred to the LO BYTE as follows:
 - a. Press the READ key followed by X00.
 - b. Press the EXECUTE key.

The 3488A display should read +00170 (a binary 10101010). If it does not, refer to Chapter 6 for problem isolation information.

- 9. Write a binary 01010101 to the HI BYTE (in order to open every other line) as follows:
 - a. Press the WRITE key followed by X01,85.
 - b. Press the EXECUTE key.
- 10. Verify that the data has been transferred to the LO BYTE as follows:
 - a. Press the READ key followed by X00.
 - b. Press the EXECUTE key.

The 3488A display should read +00085 (a binary 01010101). If it does not, refer to Chapter 6 for problem isolation information.

- 11. CHANNEL CLOSED AND EXTERNAL INCREMENT TEST: Reset the 44474A and set up a scan list as follows:
 - a. Press the CARD RESET key followed by X.
 - b. Press the EXECUTE key.
 - c. Press the MODE key followed by X,2,0,1.
 - d. Press the EXECUTE key.
 - e. Press the SCAN LIST key followed by X00-X15,0.

- f. Press the EXECUTE key.
- g. Press the DELAY key followed by 1000.
- h. Press the EXECUTE key.
- i. Press the CARD MONITOR key followed by X.
- j. Press the EXECUTE key.
- 12. Press the STEP key. If the CHAN CLOSED and PFLG/EXT lines are functioning, the 3488A will begin stepping through the scan list, opening each data line as it closes the previous line. This will be shown on the 3488A's display as the LO BYTE being successively decremented by the binary weighted value of each data line. In other words, the display will start with the value of 255, step to 254 (binary 1), step to 253 (binary 2), step to 251 (binary 4), step to 247 (binary 8), step to 239 (binary 16), step to 223 (binary 32), step to 191 (binary 64) and finally, step to 127 (binary 128). When all eight LO BYTE lines have been stepped through, the LO BYTE will reset to 255 and the process will repeat with the HI BYTE.

If the scan list will not automatically advance as described above, the CHAN CLOSED line, the PFLG/EXT INC line, or both are malfunctioning. Refer to Chapter 12 for problem isolation information.

- 13. CONTROL LINES TESTS: Set the IO/WR and the PCTL/RD lines to the high state as follows:
- a. Press the CARD RESET key followed the numeral key corresponding to the slot occupied by the 44474A.
 - b. Press the EXECUTE key.
- 14. Set the multimeter to measure dc voltage. Connect the multimeter between the GND and the PCTL/RD terminals on the test fixture. The PCTL/RD line should be in the high state (between +2.4Vdc and +5Vdc).
- 15. Connect the multimeter between the GND and the IO/WR terminals on the test fixture. The IO/WR line should be in the high state (between +2.4Vdc and +5Vdc).
- 16. Set the IO/WR and the PCTL/RD lines to the low state as follows:
 - a. Press the MODE key followed by X,1,20,0 (where X is the slot occupied by the 44474A).
 - b. Press the EXECUTE key.

The IO/WR line should be go to the low state (between 0Vdc and +0.4Vdc).

17. Connect the multimeter between the GND and the PCTL/RD terminals on the test fixture. The PCTL/RD line should be in the low state (between 0Vdc and +0.4Vdc).

If either or both control lines failed to achieve either or both states, a problem exists in either the mainframe or the 44474A. Refer to Chapter 6 for problem isolation information.

If the above 44474A tests passed, and further specification testing is desired, refer to the 44474A Performance Tests in Chapter 12.

Chapter V REPLACEABLE PARTS

CHAPTER V

TABLE OF CONTENTS

		Page
5-1	Introduction	
5-2	Disassembly/Assembly	5-1
5-3	Cover Removal	
5-4	Front Panel Removal	
5-5	Controller Board Access	5-2
5-6	Controller Board Removal	5-3
5-7	Power Supply Removal	
5-8	Replaceable Parts	
5-9	Part Ordering Information	
5-10	Direct Mail Order System	5-5
	LIST OF TABLES	
Tabl	le i i ja minimi kanalisi kan	Page
5-1	Mechanical Replaceable Parts	5-5
5-2	Code List of Manufacturers	5-6
5-3	Replaceable Parts	5-11
	LIST OF ILLUSTRATIONS	
Figu		Page
5-1	Cable Removal	
5-2	Shield Removal	
5-3	Power Supply Removal	
5-4	3488A Disassembly	5-7
5-5	3488A Disassembly	5-9

CHAPTER V REPLACEABLE PARTS

5-1 INTRODUCTION

This chapter contains:

- Disassembly/assembly instructions
- Mechanical and electrical replaceable parts (Tables 5-1 & 5-3).

5-2 DISASSEMBLY/ASSEMBLY

WARNING

The line power cable and all other interconnections must be removed before performing any disassembly procedures.

To prevent static damage, observe static handling procedures during disassembly (see section 6-3).

5-3 Cover Removal

It is necessary to remove the top cover to access any of the major assemblies within the 3488A mainframe. The cover is secured by six captive screws. To remove the cover:

- 1. Remove all power cables, interconnections, and plug-in cards from the 3488A.
- 2. Turn the 3488A upside down. Loosen the six screws in the bottom cover. The screws are captive in the bottom cover. Do not attempt to completely remove the screws.
- 3. DO NOT ATTEMPT TO REMOVE THE BOTTOM COVER FIRST. When the screws are loosened, turn the entire unit upright. The top cover can now be lifted off.
- 4. To reinstall the top cover, reverse the procedure.

5-4 Front Panel Removal

This procedure describes how to remove the front panel assembly from the mainframe.

- 1. Depress the line power switch to the on position.
- 2. The front panel is now held captive in the slot in the bottom cover. Gently pry the right side of the bottom cover until the keyboard can be released from the slot. The keyboard assembly will then swing out and clear the line power switch knob.

3. Lift the front panel up and out. The cable that attaches the front panel to the controller board has enough slack to allow the front panel to be removed. If it is desired to completely remove the front panel, disconnect the grey cable at the controller board connection by pulling the white plastic tab installed on the connector. The cable removal is shown in Figure 5-1.

The two connectors attached to the front panel are delicate connectors. These connectors should only be removed if it necessary to replace either the display assembly or keyboard assembly.

- 4. If necessary, the connectors can now be removed from the display assembly and keyboard assembly. These connectors are difficult to remove and are fragile. Removal is best accomplished by gently prying up each edge of the connector a very small amount with a small blade screwdriver.
- 5. To reinstall the front panel, reverse the procedure.

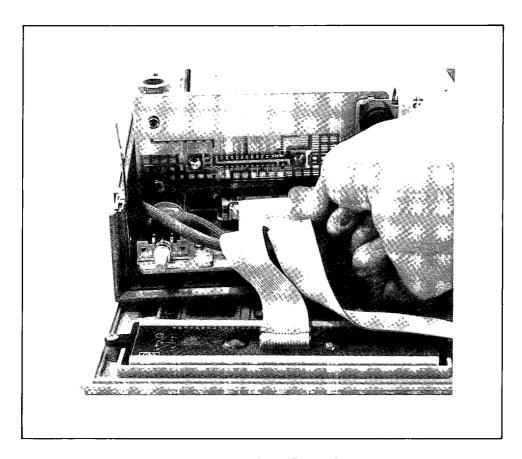


Figure 5-1 Cable Removal

5-5 Controller Board Access

To access the controller printed circuit board, remove the four screws in the shield over the board. The shield will lift up and off. The controller printed circuit board is now accessable for troubleshooting or testing. Shield removal is shown in Figure 5-2.

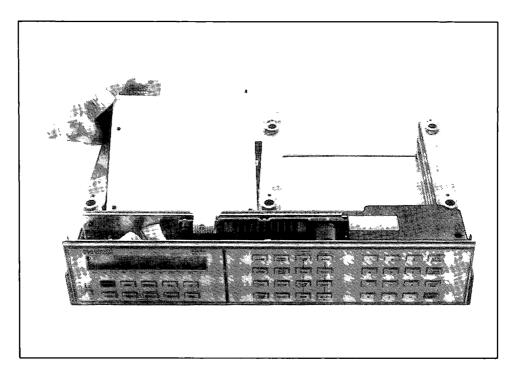


Figure 5-2 Shield Removal

5-6 Controller Board Removal

To remove the controller printed circuit board from the mainframe:

- 1. Remove the front panel assembly as described in Section 5-4.
- 2. Disconnect the front panel cable from the controller by pulling the white tab installed on the connector (see Figure 5-1).
- 3. Remove the four screws in the controller board shield and lift the shield up and out (see Figure 5-2).
- 4. Remove the posi-drive screw located on the rear panel below the silver ground terminal.
- 5. Gently pull the controller board up and toward the rear of the unit to disconnect the controller board from the backplane board. The HP-IB connector and rear panel will be removed with the controller board assembly. Lift the controller assembly up and out.
- 6. To reinstall the controller board, reverse the procedure.

5-7 Power Supply Removal

The power supply for the 3488A and the plug-in cards is located on a printed circuit board just behind the keyboard. To remove the power supply printed circuit board from the mainframe:

- 1. Remove the front panel as described in Section 5-4.
- 2. Disconnect the front panel cable from the controller board by pulling the white tab installed on the connector (see Figure 5-1).

3. Disconnect the power supply printed circuit board from the line power transformer by removing the white three conductor connector located near the right edge of the circuit board (see Figure 5-3).

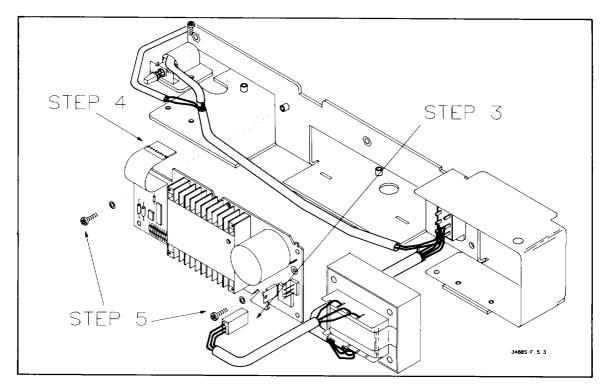


Figure 5-3 Power Supply Removal

- 4. Disconnect the power supply from the backplane circuit board by removing the connector on the top of the backplane board (see Figure 5-3). DO NOT excessively flex the cable.
- 5. The power supply printed circuit board can now be removed from the mainframe by removing the two Pozi-drive screws holding it in place. Figure 5-3 shows the location of these screws. Lift the power supply assembly straight up so that the bottom tabs on the circuit board clear the slots in the sheet metal.
- 6. To replace the power supply assembly, reverse the procedure.

5-8 REPLACEABLE PARTS

Table 5-1 lists mechanical replaceable parts available for the 3488A. The reference designators used in Table 5-1 are keyed to Figures 5-4 and 5-5. These figures also provide assembly and disassembly information.

Table 5-2 lists manufacturers code numbers as they apply to the electrical parts lists provided in Table 5-3. Table 5-3 is divided by electrical assembly number and reference designator. The assembly number and reference designator appear on the component locator and schematic of the assembly.

Replaceable parts for the plug-in assemblies are not listed in this section. Refer to the specific plug-in card chapter of this manual for plug-in card replaceable parts.

5-9 Part Ordering Information

To order a listed part in Table 5-1 or Table 5-3, quote the Hewlett-Packard part number, the check digit (abbreviated CD), and the quantity desired. Address the order to the nearest Hewlett-Packard Sales Office. Hewlett-Packard Sales Offices are listed at the back of this manual.

5-10 Direct Mail Order System

Within the U.S.A. only, Hewlett-Packard can supply parts through a direct mail order system. Mail order forms and specific ordering information are available through your local Hewlett-Packard Sales Office.

Table 5-1 Mechanical Replaceable Parts

REF	PART NUMBER	ату	CD	DESCRIPTION	
A10	03488-66510	1	5	BACKPLANE BOARD	1
A31	03488-66531	1 1	9	POWER SUPPLY BOARD	
A40	03488-66540	1 1	1	CONTROLLER BOARD	
F1	2110-0012	1	1	FUSE 500 MA FOR 115V	
	2110-0489	1	6	FUSE 250 MA FOR 230V	
MP1*	5040-5196	1 1	6 7	TOP SHELL, MOLDED	
MP2	03488-00601	1 1		CONTROLLER SHIELD	
MP3	0515-0844	4	3	SCREW 2.5 X 22	
MP4	2190-0577	2	1 1	WASHER, LOCK	
MP5	0380-1270	2	4	STANDOFF, HEX	
MP6	03488-00202	1 1	4	REAR PANEL	
MP7	1510-0038	1 1	8	BINDING POST	
MP8	2190-0060	1	1 3	WASHER, LOCK	
MP9	2950-0072	1	3 5	NUT SCREW 3.0 X 12	
MP10	0515-0408	1	9	FUSE CAP GREY FOR 115V	1. 0
MP12	2110-0565	1	1	FUSE CAP BLACK FOR 230V	licages used
14040	2110-0567	1	8	FUSE HOLDER BODY	
MP13 MP14	2110-0564 2110-0569	1	3	FUSE HOLDER BODY	5 - 2 7
MP15	0515-0406	2	3	SCREW 3.0 X 8	longer used See pg. 2-2
MP16	3050-0891	2	7	WASHER, FLAT	, ,
	2190-0004	1 1	l ģ	WASHER, FLAT	
MP18 MP19	03488-62701		8	LINE FILTER ASSEMBLY	1
MP20	1600-1185	2	9	RACK MOUNT FASTENER	
MP21*	0515-1325	6	7	SCREW 4 X .7MM	
MP23	03488-64102	1 1	6	BOTTOM PLATE	
MP24*	5040-5195	Ιi	5	BOTTOM SHELL, MOLDED	
MP25	5180-0223	4	6	SIDE TRIM	
MP26	5040-7201	2	lĕ	FRONT FOOT	
MP27	1460-1345	2	5	TILT STAND	
MP28	5040-7222	2	3	REAR FOOT	
MP29	03488-60202	1 1	9	FRONT PANEL ASSEMBLY	
MP30	5061-1190	li	6	DISPLAY ASSEMBLY	
MP31	0624-0333	Ì	6	SCREW 4-20 X .25	
MP32	0370-0603	l ī	4	KNOB, PUSH BUTTON	
MP33	03488-04103	ĺi	Ιi	SWITCH ASSEMBLY]
MP37	0515-0408	4	5	SCREW 3.0 X 12	
MP38	0515-0211	6	8	SCREW 3.0 X 6	
MP39	5041-5209	3	4	PC GUIDE	j

^{*} Refer to Chapter 7 for additional information.

Table 5-1 Mechanical Replaceable Parts (Cont'd)

REF	PART NUMBER	ату	CD	DESCRIPTION
MP40 MP41 MP42 MP43 MP44 MP54 T1 W2 W5 W6	0515-0306 7102-0081 0390-0006 3050-0893 2190-0586 0515-0845 03478-49301 9100-4347 8120-4208 8150-4563 8150-4696 8150-4707 03488-90002 03488-90012 9222-0698	4 1 8 4 4 2 1 1 1 1 1 1 1 1 1	2 4 3 0 2 4 4 9 2 5 5 9 9 8 0	SCREW 4.0 X 40 THANSFORMER COVER INSULATOR WASHER, FLAT WASHER, LOCK SCREW 3.0 X 18 WINDOW-DISPLAY ASSEMBLY THANSFORMER FRONT PANEL CABLE ASSEMBLY JUMPER (WHT/BLK/GRY) JUMPER (WHT/RED/GRY) JUMPER (GRAY) OPERATORS MANUAL SERVICE MANUAL ANTI-STATIC BAG
	03488-66501 5061-1173 5061-1174		4 5 6	TEST FIXTURE EXTENDER BOARD EXTENDER CABLE

Table 5-2 Code List of Manufacturers

Mfr. No.	Manufacturer Name	Address	Address		
S4013 01121	Hitachi America Ltd.	Sunnyvale	CA	94086	
01121	Allen-Bradley Co, Inc Texas Instruments Inc	El Paso	TX	79935	
04713		Dallas	TX	75265	
•	Motorola Inc Semi-Cond Prod	Phoenix	AZ	85008	
1B546	Varo Semiconductor Inc	Garland	TX	75046	
11236	CTS Corp Berne Div	Berne	IN	46711	
19701	Mepco/Centralab Inc	W Palm Beach	FL	33407	
2M627	Rohm Corp	Irvine	CA	92716	
24546	Corning Electronics	Santa Clara	CA	95050	
26654	Varadyne Inc	Santa Monica	CA	90404	
27014	National Semiconductor Corp	Santa Clara	CA	95052	
28480	Hewlett-Packard Co Corporate Hq	Palo Alto	CA	94304	
50088	Mostek Corp	Carrollton	TX	75006	
56289	Sprague Electric Co	North Adams	MA	01247	
9N171	Unitrode Corp	Lexinaton	MA	02173	
91637	Dale Electronics Inc	El Paso	TX	79936	

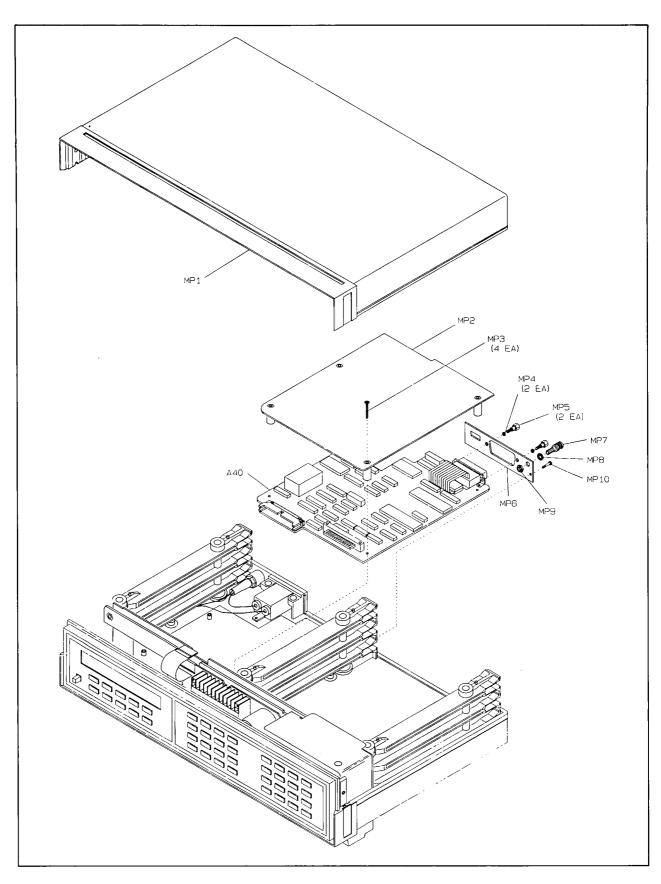


Figure 5-4 3488A Disassembly

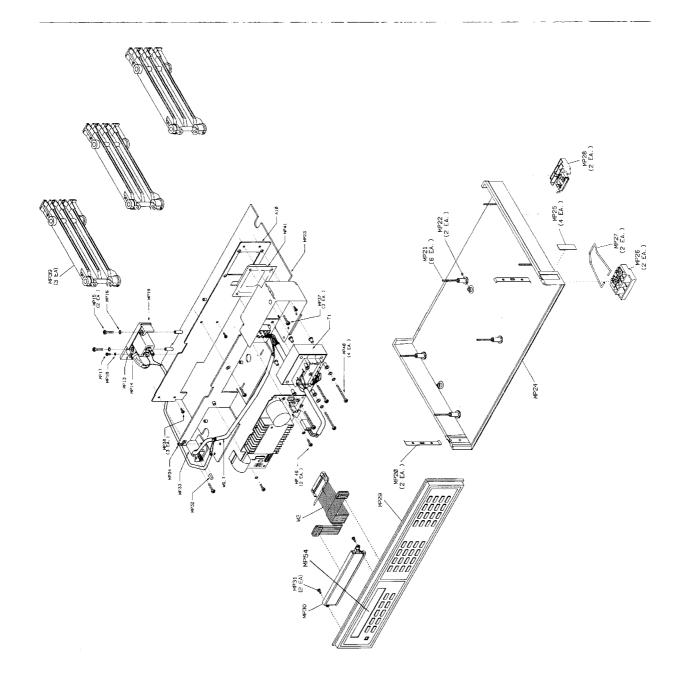


Table 5-3 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A10	03488-66510	5	i	BACKPLANE ERC: 2718	28480	03489-66510
A10J101	5180-8211	8	6	CONN-EDGE 2X15	28480	5180-8211
A10J102	5180-8211	8		CONN-EDGE 2X15	28480	5180-9211
A10J103 A10J104'	5180-8211 5180-8211	8		CONN-EDGE 2X15 CONN-EDGE 2X15	28480 28480	5180-8211 5180-8211
A10J105	5180-8211	8		CONN-EDGE 2X15	28480	5180-8211
A10J106 A10J107	5180-8211 1251-5287	8 9	1.	CONN-EDGE 2X15 CONNECTOR 8-PIN M POST TYPE	28480 28480	5180-8211 1251-5287
A31	03488-66531	0	i	POWER SUPPLY ERC: 2718	28480	03488-66531
A31C300	0160-3622	8	1	CAPACITOR-FXD .1UF +80-20% 100VDC CER	26654	2130Y5V100R104Z
A31C301 A31C302	0180-3880 0180-0230	2	1 1	CAPACITOR-FXD 4700UF+-20% 50VDC AL CAPACITOR-FXD 1UF+-20% 50VDC TA	28480 56289	0180-3880 150D105X0050A2
A31C316 A31C317	0180-1745	4	2	CAPACITOR-FXD 1.5UF+-10% 20VDC TA	56289	150D155X9020A2
	0180-1745			CAPACITOR-FXD 1.5UF+-10% 20VDC TA	56289	150D155X9020A2
A31CR302 A31CR304	1906-0079 1901-0025	2	1 1	DIODE-FW BRDG 100V 10A DIODE-GEN PRP 100V 200MA DO-7	1B546 9N171	VJ148X 1N645
A31J300	1251-4246	8	1	CONNECTOR 3-PIN M POST TYPE	28480	1251-4246
A31P302	03488-61601	5	1	CBL-ASSY PWRSPLY	28480	03488-61601
A31Q302	1853-0016	8	1	TRANSISTOR PNP SI TO-92 PD=300MW	28480	1853-0016
A31R300	0698-3160	8			1	
A31R303	0698-3548	6	i	RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 732 1% .125W F TC=0+-100	24546 24546	CT4-1/8-T0-3162-F CT4-1/8-T0-732R-F
A31R304 A31R334	0757-0408 0683-1035	7 1	1 2	RESISTOR 243 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400	24546 01121	CT4-1/8-T0-243R-F
A31R336	0698-4202	1	1	RESISTOR 8.87K 1% .125W F TC=0+-100	01121 24546	CB1035 CT4-1/8-T0-B871-F
A31R337	0698-8162	0	1	RESISTOR 11.8K .25% .125W F TC=0+-50	19701	5033R-1/8-T2-1182-C
A31R341	0698-4478	3	1	RESISTOR 10.7K 1% .125W F TC=0+-100	24546	CT4-1/8-T0-1072-F
A31R345 A31R346	0757-0465 0757-0465	6	2	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	24546 24546	CT4-1/8-T0-1003-F CT4-1/8-T0-1003-F
A31R347	0683-1035	1		RESISTOR 10K 5% .25W CF TC=0-400	01121	CB1035
A31R348	0683-3645	3	í	RESISTOR 360K 5% .25W CF TC=0-800	01121	CB3645
A31R350 A31R351	0683-3015 068	1	2	RESISTOR 300 5% .25₩ CF TC=0-400	01121	CB3015
A31SP300	0960-0561	4	1	AUDIO TRANSDUCER 1-3VDC; 85DB AT 1.5V	28480	0960-0561
A31TP003 A31TP004	1251-0600 1251-0600	0	2	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	28480 28480	1251-0600 1251-0600
A31U300	1813-0544	3	1	SWG VOLTAGE REG	28480	1813-0544
A31U301 A31U303	1826-0393 1826-0412	7	1 1	IC V RGLTR-ADJ-POS 1.2/37V TO-220 PKG IC COMPARATOR PRCN DUAL 8-DIP-P PKG	28480 27014	1826-0393 LM393N
A31U304 A31U305	1820-1202 1820-1932	7	2	IC GATE TTL LS NAND TPL 3-INP	01295	SN74LS10N
	1020-1732	ű	1	IC MV CMOS MONOSTBL RETRIG/RESET DUAL	04713	MC14538BCP
A40	03488-66540	1	i	CONTROLLER ERC: 2642	28480	03488-66540
A40C401 A40C402	0180-0224	2	2	CAPACITOR-FXD 10UF+75-10% 16VDC AL	56289	30D106G016BA2
A40C403	0160-4808 0160-3847	4 9	1 12	CAPACITOR-FXD 470PF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480	0160-4808 0160-3847
A40C404 A40C405	0160-3847 0160-3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480	0160-3847
				CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480	0160-3847
A40C486 A40C407	0160-3847 0160-3847	9		CAPACITOR-FXD .01UF +100-0% SOVDC CER CAPACITOR-FXD .01UF +100-0% SOVDC CER	28480 28480	0160-3847 0160-3847
A40C408 A40C409	0160-4822	2	1	CAPACITOR-FXD 1000PF +-5% 100VDC CER	28480	0160-4822
A40C410	0160-3847 0160-3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480	0160-3847 0160-3847
A40C411	0160-3847	9		CAPACITOR-FXD .01UF +100-0% SOVDC CER	28480	0160-3847
A40C412	0160-4825	5	i	CAPACITOR-FXD 560PF +-5% 100VDC CER	28480	0160-4825
A40C413 A40C414	0160-3847 0160-3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER .CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480	0160-3847 0160-3847
A40C415	0160-3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480	0160-3847
A40C416	0160-4787	8	1	CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30	28480	0160-4787
A40C417 A40C418	0160-3847 0180-0224	9 2		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 10UF+75-10% 16VDC AL	28480 56289	0160-3847 30D106G016BA2
A40CR401	1901-0033	2	3	DIODE-GEN PRP 180V 200MA DO-35	9N171	
A40CR402	1901-0033	2	3	DIODE-GEN PRP 180V 200MA DO-35	9N171	1N645 1N645
A40CR403	1901-0033	2	j	DIODE-GEN PRP 180V 200MA DO-35	9N171	1N645
A40DP401 A40DP402	1906-0229 1906-0229	8	3	DIODE-ARRAY 50V 400MA DIODE-ARRAY 50V 400MA	01295 01295	T1D133 T1D133
A40DP403	1906-0229	8		DIODE-ARRAY SOV 400MA	01295	TID133
	j				ļ	
		\perp	1			

See introduction to this section for ordering information $*Indicates\ factory\ selected\ value$

Table 5-3 Replaceable Parts (Cont'd)

Reference	Reference HP Part C Otto Description Mfr Mfr Part Number					
Designation	Number	D	Qty	Description	Code	Mfr Part Number
A40J401	1251-5615	7	1	CONNECTOR 34-PIN M POST TYPE	28480	1251-5615
A40JM401 A40JM403 A40JM404	7175-0057 7175-0057 7175-0057	5 5	3	RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 28480	7175-0057 7175-0057 7175-0057
A40L401	9140-0748	0	1	INDUCTOR 250UH 25% ,28D-INX.53LG-IN Q=3	28480	9140-0748
A40P401	1251-8645	9	í	CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480	1251-8645
A40Q401	1854-0071	7	i	TRANSISTOR NPN SI TO-92 PD=300MW	2M627	CP4071
A40R400 A40R401 A40R402 A40R403 A40R404	0683-2025 0698-3359 0698-8827 0683-1025 0683-4715	1 7 4 9	1 1 1 1	RESISTOR 2K 5% .25W CF TC=0-400 RESISTOR 12.7K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400	01121 24546 28480 01121 01121	CR2025 CT4-1/8-T0-1272-F 0698-8827 CB1025 CB4715
A40R405	0683-3335	8	1	RESISTOR 33K 5% .25W CF TC=0-400	01121	CB3335
A40RP401 A40RP402 A40RP403 A40RP404 A40RP405	1810-0560 1810-0280 1810-0280 1810-0265 1810-0280	7 8 8 9 8	1 4 1	NETWORK-RES 16-DIP5.6K OHM X 8 NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 16-DIP 680.0 OHM X 8 NETWORK-RES 10-SIP 10.0K OHM X 9	28480 91637 91637 01121 91637	1810-0560 CSC10A01-103G/MSP10A01- CSC10A01-103G/MSP10A01- 316B681 CSC10A01-103G/MSP10A01-
A40RP406 A40RP407 A40RP408 A40RP409	1810-0280 1810-0286 1810-0201 1810-0307	8 4 3 0	i i i	NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 16-DIP 10.0K OHM X 15 NETWORK-RES 14-DIP 100.0K OHM X 13 NETWORK-CNDCT MODULE DIP; 16 PINS; 0.100	91637 11236 11236 28480	CSC10A01-103G/MSP10A01- 761-1-R10K 760-1-R100K 1810-0307
A40RT401	0837-0220	1	i	THERMISTOR ROD 10K-OHM TC=-3.83%/C-DEG	28480	0837-0220
A40SWP401 A40SWP402	3101-2094 3101-2696	5 3	i 1	SWITCH-RKR DIP-RKR-ASSY 8-1A .05A 30VDC SWITCH-RKR DIP-RKR-ASSY 6-1A .05A 30VDC	28480 28480	3101-2094 3101-2696
A40U401 A40U402 A40U403 A40U404 A40U405	1818-3830 1818-1611 1820-1281 1820-1794 1820-2216	67225	i i 5 2	IC NMOS 262144 (256K) ROM 250-NS 3-S IC CMOS 16384 (16K) STAT RAM 150-NS 3-S IC DCDR TTL LS 2-TO-4-LINE DUAL IC BFR TTL LS NON-INV OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL	50088 \$4013 01295 27014 27014	MK3B000N-25 MASKED HM6116P-3 SN74L5139AN DMB1L595N MM74C374N
A40U406 A40U407 A40U408 A40U409 A40U410	1820-2216 1820-1794 1820-1794 1820-1208 1820-2702	5 2 2 3 4	i i	IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL IC BFR TTL LS NON-INV OCTL IC BFR TTL LS NON-INV OCTL IC GATE TTL LS OR QUAD 2-INP IC DIVR CMOS DIVIDE-BY-24	27014 27014 27014 01295 04713	MM74C374N DM81L595N DM81L595N SN74L532N MC14521BCP
A40U411 A40U412 A40U413 A40U414 A40U415	1820-1445 1820-1445 1820-1216 1820-1216 1820-1179	0 0 3 3	2 1	IC LCH TTL LS 4-BIT IC LCH TTL LS 4-BIT IC DCDR TTL LS 3-TD-8-LINE 3-INP IC DCDR TTL LS 3-TD-8-LINE 3-INP IC INV TTL LS HEX 1-INP	01295 01295 01295 01295 01295	SN74LS375N SN74LS375N SN74LS138N SN74LS138N SN74LS138N SN74LS04N
A40U416 A40U417 A40U418 A40U419 A40U420	1820-1197 1820-1197 1820-2469 1820-1794 1820-1201	9 9 0 2 6	2 1 1	IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC-MICROPROCESSOR IC BFR TTL LS NON-INV OCTL IC GATE TTL LS AND QUAD 2-INP	01295 01295 28480 27014 01295	SN74LS00N SN74LS00N 1820-2469 DM61LS95N SN74LS08N
A40U421 A40U422 A40U423 A40U424 A40U425	1820-2102 1820-1794 1820-2490 1820-2549 1820-2485	8 2 7 7 0	1 1 1	IC LCH TTL LS D-TYPE OCTL IC BFR TTL LS NON-INV OCTL IC-MPU; CLK FREQ=1 MHZ, ENHANCED 6800 IC-8291A P HPIR IC TRANSCEIVER TTL LS INSTR-BUS IEEE-488	01295 27014 28480 28480 01295	SN74LS373N DMB1LS95N 1820-2490 1820-2549 SN75160AN
A40U426 A40U427	1820-1202 1820-2483	7 8	i	IC GATE TTL LS NAND TPL 3-INP IC RCVR TTL LS BUS OCTL	01295 01295	SN74L510N SN75161AN
A40W40i	8120-4206	6	1.	FLAT RIBBON ASSY 28-AWG 24-COND	28480	8120-4206
A40X400	1200-0853	8	í	SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0853
A40Y401	0410-1493	8	i	CRYSTAL-QUARTZ 4.0000 MHZ HC-18/U-HLDR	28480	0410-1493

Chapter VI SERVICE

CHAPTER VI TABLE OF CONTENTS

	Page		Pag
6-1	Introduction	6-32 Introduction	
6-2	Safety Considerations	6-33 Primary Functions	
6-3	Static Handling	6-34 Address Decoding	6-1
6-4	Printed Circuit Beard Identification6-2	6-35 Backplane Interface	6-1
6-5	Board Part Number6-3	6-36 Interrupt Logic	6-1
6-6	Engineering Revision Code6-3	6-37 Keyboard, Display, and Address Logic	
6-7	Problem Isolation	6-38 Controller Troubleshooting	
6-8	Preliminary Tests	6-39 Initial Set-Up	6-2
6-9	Board Substitution	640 Test Equipment Required	6-2
6-10		6-41 Initial Checks	6-2
6-11	Power Supply	6-42 Controller Signature Analysis:	6-2
6-12	Controller	6-44 Stuck Line Troubleshooting	
6-13			
6-14	Keyboard		
6-15	Backpland6-7		Sign Co
6-16	Power Supply Theory Of Operation 6-7	LIST OF ALLUSTRATIONS	
6-17	Pover Supply Protection		
6-18		Pipure	Pag
6-19		6-1 Typical ERC Label	6-
6-26	POK	6-2 TP3 (GND) and TP4 Test Points	6-
6-21		6-3 Simplified Power Supply	6
6-22	Power Supply Troubleshooting	6-4 Controller Basic Block Diagram	6-1
6-2	Tast Equipment Required	6-5 Primary Functions Simplified Schematic.	6-1
6-24		6-6 Address Decoding Simplified Schematic.	
6-2	Loading This Power Supply	6-7 Backplane Interface Simplified	
6-24		Schematic	6-1
6-2		6-8 Interrupt Logic Simplified Schematic	6-1
6-2	Bigiwa Pase	69 Backolane Schematic	6-5
6-25	PON Troublestopting	6-10 Power Supply Schematic	6-3
6-30	POK Troubleshooting	6-11 Controller Schematic	6-1
T. 1. 1. 5. 5. 5. 5.	Controller Theory of Operation		
MAI			

CHAPTER VI SERVICE

6-1 INTRODUCTION

This chapter is divided into three parts. The first part (sections 6-1 through 6-6) give general service related information for the HP3488A. This includes safety considerations, static handling procedures, and printed circuit board identification.

Sections 6-7 through 6-15 contain information to aid in the isolation of a problem to a particular assembly in the HP 3488A. There are two problem isolation discussions: one discussion (beginning at section 6-7) provides information to aid problem isolation to either a plug-in card or the mainframe, the other discussion (beginning at section 6-10) will aid in isolating a problem in the mainframe to a particular mainframe assembly.

The remaining sections of this chapter contain specific information pertaining to the two main subsections of the mainframe: the power supply (A30) and the controller (A40). This specific information is presented as a detailed theory of operation, a troubleshooting information section, and a schematic of the assembly.

6-2 SAFETY CONSIDERATIONS

Only service trained personnel should attempt to repair the 3488A. There are two places in the unit where dangerous voltages may exist. The ac line voltage exists in the mainframe around the areas of the line input filter, line power switch, and transformer primary. This potentially lethal voltage can only be contacted if the covers are removed.

The other potentially lethal voltage may exist at the plug-in card wiring block. This voltage is generated externally to the 3488A. Consult the system installer or documentation worksheet (given in the 3488A Operation Manual) before attempting to remove the 3488A and plug-in cards from the system.

WARNING

Only personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make any repairs to this instrument or assembly.

To prevent equipment circuit damage, always set the line power switch to off before removing or replacing any assembly. To prevent static zap of IC's, always observe anti-static techniques when assemblies are handled or serviced.

6-3 Static Handling

Static electricity is a familiar phenomenon which, except for an occasional shock, doesn't seem very serious. However, it has been proven that in the electronics industry electrostatic discharge (ESD) is a major cause of component failure. In many cases, the component damaged may not immediately fail, causing low instrument reliability and unnecessary repairs at a later time. ESD damage can occur at static levels too low for human perception. Additionally, it has been shown that ESD can affect both passive and active devices.

Any assembly or subassembly removed from the mainframe MUST be handled in accordance with anti-static handling procedures. This specifically includes plug-in cards.

The following guidelines are the minimum requirements for a static safe service environment.

- The work bench should be equipped with a conductive table mat. The mat should be grounded to earth ground through a 1 megohm resistor. The mat should be equipped with at least one swivel conector for connecting wrist straps.
- All service and handling personnel should wear a conductive wrist strap in contact with bare skin. This strap should be connected to the swivel connector on the conductive table mat through a 1 megohm resistor.
- All metal equipment at a work station must be grounded. This includes soldering irons, solder suckers, shelving, and equipment stands.
- Only one common ground should be provided at a workstation.
- The workstation must be kept free of nonconductors. No common plastics, polybags, cardboard, cigarette or candy wrappers should be allowed. There should not be rugs or carpet on the floor, shelving, or bench top.
- Only proper containers should be used for shipping, storing and transporting assemblies.

6-4 PRINTED CIRCUIT BOARD IDENTIFICATION

The printed circuit boards contained in the 3488A and the plug-in cards are identified by the board part number and the engineering revision code. These two sequences of numbers are used to exactly identify the electrical characteristics of the printed circuit board. In this manual the engineering revision code and board part number are given on the schematics, component locators, and electrical parts lists.

In any correspondance with a service office or service representative it is necessary to exactly identify the printed circuit board configuration. This is done in a standard format using the board part number followed by the engineering revision code. For example:

03488-66510-2310

would describe a particular backplane printed circuit board assembly in the 3488A. The board part number is 03488-66510 and the engineering revision code is 2310. The information given in this example can be seen, although it may not be identical, by removing any plug-in cards

from slots 1, 2, and 3 of the mainframe and looking at the backplane printed circuit board just above the line voltage selector switch.

6-5 Board Part Number

The Hewlett-Packard part number of the printed circuit board is etched on the board. This is a ten digit number, separated by a hyphen into two groups of five digits. The first five digits generally identify the model number or assembly number of which the printed circuit board is a part. The last five digits are a unique part number for identifying the the printed circuit board.

6-6 Engineering Revision Code

Figure 6-1 shows a typical Engineering Revison Code label. This four digit code is in the form of YYWW, where YY is the last two digits of the year minus year 60 and WW is the week code. For example, an engineering revision code of 2310 would identify a change made in the tenth week of 1983.

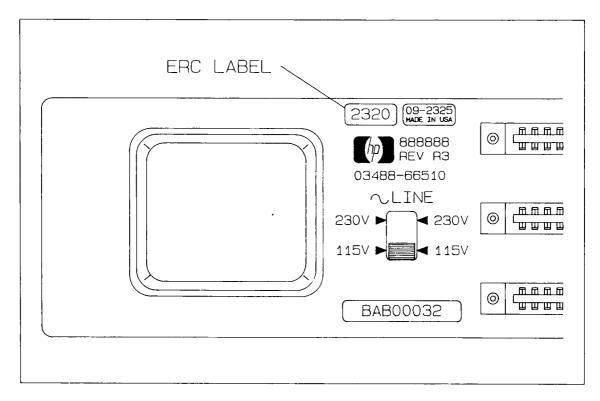


Figure 6-1 Typical ERC Label

The engineering revision code is updated whenever a change is made to the assembly. This change may be a printed circuit board revision, a component value change, added or deleted components, a component part number change, or a revised test and assembly procedure.

The engineering revision code should be checked against schematics, component diagrams, and parts lists to ensure compatibility. Engineering revison codes with lower values than noted on the schematics, component diagrams, and part lists are described in the backdating section. Engineering revision codes with values higher than that noted on the schematics, component diagrams, and parts lists will be covered by manual change sheets or manual revisions.

In this manual and in other literature about the 3488A, the engineering revision code may be designated by the abbreviation ERC.

6-7 PROBLEM ISOLATION

These procedures assume that reasonable steps have been taken to isolate the system problem to the 3488A. These steps may include checking the system controller, input devices, and output devices. If the 3488A is on a common HP-IB interface with other instruments, a bus failure can sometimes be isolated to a particular instrument by disconnecting the instruments from the interface one at a time.

6-8 Preliminary Tests

WARNING

The following procedure requires that the system controller be stopped and disconnected and that the 3488A be removed from the system. Ensure that no damage to other parts of the system will be caused by these actions.

Once the 3488A is suspected of a failure:

- 1. Stop the system controller. This is to prevent the 3488A from receiving any local lockout, display off, or other commands that may confuse the problem isolation procedure.
- 2. Cycle power on the 3488A. The display should show the lazy T (\vdash). If the 3488A display appears "dead", press any front panel device function key (any key in the center keypad) and check if the command is shown in the display. If the 3488A does not respond, check the power fuse. Fuses are described in section 2-5. If the fuse and primary power are good and the 3488A still won't display any characters:
 - a. Turn off the 3488A and remove the power cord. Disconnect the HP-IB interface. Remove any plug-in cards installed in the 3488A.
 - b. Replace the power cord and turn on the 3488A. The lazy T (\vdash) should appear in the display and the 3488A should respond to any key closure of the device function keys by displaying the key command.

If the 3488A does not respond, a problem exists in the mainframe. The problem may be further isolated within the mainframe by performing the procedures described in section 6-10.

If the 3488A responds to the front panel keys and the display functions, the problem most likely exists on one of the plug-in cards or the HP-IB interface. Replace the plug-in cards one at a time, cycling power each time. If a card is installed and the 3488A no longer responds, the plug-in card is faulty. If all the plug-in cards are re-installed and the 3488A still functions, re-install the HP-IB connector. If the 3488A does not respond now, a problem is indicated on the HP-IB interface. The computer or interface manual will contain a procedure to verify the correct operation of the HP-IB.

3. If the 3488A display works but the 3488A does not seem to function properly, perform the Operation Verification tests describe in Chapter 4. These tests provide a quick and simple method to determine if the 3488A and plug-in cards are functioning properly.

6-9 Board Substitution

The easiest and fastest method to isolate a failure to a particular printed circuit board is the board substitution technique. The technique calls for the suspected bad board to be replaced with a known good board. If the problem is solved, the replaced board or assembly had the problem. One drawback to this technique is the need for known good circuit boards.

A limited board substitution may be performed to isolate a faulty plug-in card. To use this method, first, determine which plug-in card is suspected of the failure. The Operation Verification procedures in Chapter 4 may be used as a troubleshooting aid. Then try the failing card in another mainframe slot. If the card functions normally in the other slot, a mainframe failure is indicated. If the card still fails, try another card. This other card does not have to be the type as the failing card. If the other card does not function properly, a mainframe failure is indicated. If the new card does function properly, a failure in the suspected card is indicated.

6-10 MAINFRAME PROBLEM ISOLATION

Once the 3488A is suspected of a failure the problem may be further isolated within the mainframe to a particular assembly. Isolating a problem within the mainframe requires that the 3488A be at least partially disassembled. A disassembly procedure is given in Chapter 5.

There are five main electronic assemblies within the 3488A. These assemblies are: (1) the power supply, (2) the controller, (3) the display, (4) the keyboard, and (5) the backplane board. Because of the interaction of some of these assemblies problem isolation is limited to replacement of the suspected assembly.

6-11 Power Supply

To determine if a problem exists within the power supply it will be necessary to remove the 3488A top cover. Chapter 5 provides a procedure to remove the cover. A voltmeter is also required. A recommended voltmeter is the Hewlett-Packard Model 3478A.

The power supply printed circuit board is located behind the keyboard. Connect the voltmeter common lead to TP3 (GND) on the power supply board (shown in Figure 6-2). Connect the voltmeter positive test lead to TP4 on the power supply board (shown in Figure 6-2).

Apply power to the 3488A. The voltmeter should indicate ± 5.1 Vdc (± 0.1 Vdc).

If the voltmeter reading is correct, the problem exists in one of the other assemblies. If the voltmeter reading is incorrect, remove power from the 3488A and disconnect the white cable between the power supply board and the backplane board (refer to Figure 5-3). Take care not to excessively flex the cable. This isolates the power supply from the rest of the unit.

Re-apply power to the 3488A. If the voltmeter reading is correct, the problem exists in one of the other assemblies. If the voltmeter reading is still incorrect, the problem exists in the power supply or the power supply input. The input to the power supply, as measured at the secondary of the transformer (the two brown wires in white connector shown in Figure 5-3) should be approximately 25 Vac.

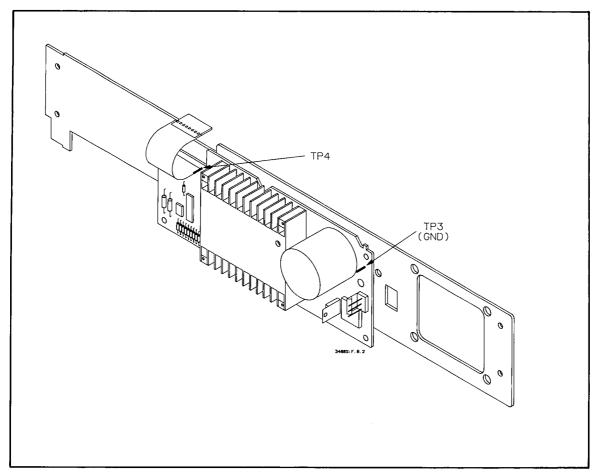


Figure 6-2 TP3 (GND) and TP4 Test Points

6-12 Controller

Isolating a problem to the controller is best accomplished by the substitution of a known good controller. The signature analysis procedures in Section 6-43 may also be used to verify correct controller operation. Failures in the controller will, for the most part, be readily apparent. Symptoms of a failure in the controller include: a confused, incorrect, or dead display, an interface bus hang-up, front panel command response but no HP-IB command response, a failure of all plug-in cards or slots, or an incorrect response to a command.

Access to the controller printed circuit board is described in Section 5-5.

6-13 Display

Problems in the display can usually be detected by performing the display test described in Section 4-5. Typically, a failing display will exhibit missing segments. Display removal is depicted in Chapter 5.

6-14 Keyboard

Problems in the keyboard can usually be isolated by performing the keyboard test described in Section 4-10. No response to a key closure is the typical failure mode of the keyboard. No response to any key closure would indicate a controller failure. Procedures to remove the front panel are given in Section 5-4.

6-15 Backplane

The backplane board has no active components. Failures of the backplane board will, typically, be visually identifiable. If a plug-in card will not function in only one slot, the backplane board should be suspected. Connector failure on the backplane board will be the most common form of backplane failures. Because the plug-in card slots are all in parallel on the backplane, a shorted connector on the backplane board may appear to be a controller failure.

6-16 POWER SUPPLY THEORY OF OPERATION

This theory of operation references the power supply schematic, Figure 6-14. The power supply for the 3488A and all the option cards is contained on the A31 circuit board assembly. The power supply used is a switching mode type supply.

Primary power can be either 115 Vac or 230 Vac, 48 to 440 Hz. The primary power is applied through a line filter that is an integral part of the line power input connector. Fuse F1 protects the 3488A from damage. F1 is rated at 500 mA for 115 Vac operation and 250 mA for 230 Vac operation. Both fuses are normal blow type fuses.

Switch S2 selects the transformer (T1) primary windings to match the line input voltage. S2 is accessible through the option card slots on the rear of the 3488A.

A simplified schematic of power supply operation is shown in Figure 6-3. The secondary voltage of the transformer is applied to CR302, a full wave rectifier. The rectifier produces a DC output of approximately 31 volts. The 31 Vdc is applied to regulator U301. This is a 5-volt regulator and provides the operating voltage for the comparator and the logic on the power supply board. The +5 VR is only used on the power supply assembly. It is not routed to other assemblies in the instrument.

The 31 Vdc is applied to the switching regulator U300. U300 is a step down switching mode regulator. U300 provides all of the necessary output filtering. The output of U300 is the +5V supply.

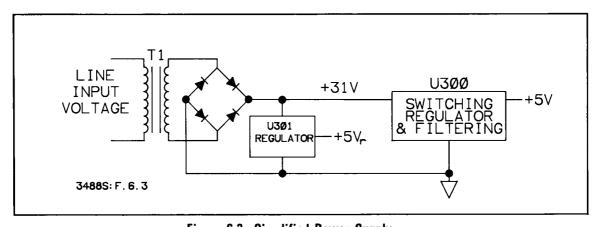


Figure 6-3. Simplified Power Supply

6-17 Power Supply Protection

Switching Regulator U300 provides three types of protection.

- 1. Thermal Protection: U300 has a thermal protection inside. When the internal junction temperature of active components reaches 150°C, U300 is switched off. Normal operation is restored when the internal junction temperature falls below 130°C.
- 2. Short Circuit Protection: U300 is protected against temporary and permanent short circuits of the output pin (pin 8) to ground or against output current overloads.
- 3. Load Protection: U300 protects the load connected to its output against overvoltages by a crowbar circuit. If the output of U300 exceeds the nominal value by +20%, a crowbar protection is activated; this shorts the output to ground.

6-18 Controller Signals

There are two signals output from the power supply to the controller (A40). These are PON and POK.

6-19 PON

The PON line provides a wake-up signal to the controller. PON is output from nand-gate U304C at pin 8. The pin 9 input to the gate is tied high, the pin 10 input is controlled by U300 pin 2. Initially, the output of U300 will be low. This holds PON high through the pin 10 input to U304C.

The output of U300 also is applied to U305 at pin 12. U305 is a dual one-shot multivibrator. Pin 12 controls the A portion of the one-shot. A transition on pin 12 from low to high triggers the multivibrator. The duration of the output pulse is determined by R346 and C316. The Q output of the multivibrator is applied to pin 11 of nand-gate U304C.

PON is thus controlled by two sources. Initially, PON is held high by the low input from U300. After a brief interval, U300 output will go high. This transition triggers the multivibrator, U305, and the Q output goes low. The low output holds PON high through U304C pin 11. After the multivibrator has timed out (approximately 0.47 seconds) the Q output returns high and PON goes low. The controller then takes PON low to be the wake-up signal. This action ensures that all the power supplies are operating before the controller begins operation.

6-20 POK

The controller uses the POK line to indicate problems with the line input power. The POK line is held low during normal operation. If the POK line should go high, the controller will generate ERROR 16: POWER.

When power is first applied to the 3488A, POK is held high until the +5V supply is operating. The output of U300 holds pin 2 of U304B low, keeping POK high. This will not generate an error condition because the controller has not yet been powered up and PON will be low.

Because line power problems may occur too quickly for the controller to respond, the POK pulse is stretched. This stretching of the pulse occurs through the action of U304A and the B portion of U305. The output of U304A is connected to pin 5 of U305. A high to low transition on this pin will trigger the one shot. The Q output of the one shot is connected to pin 3 of U304B. The duration of the output pulse is set by timing components R345 and C317. The output pulse width is nominally 0.15 seconds.

Two of the three inputs to U304A are also inputs to U304B. A low input on either of these lines will cause the POK line to be set high and also trigger the one shot and stretch the pulse through pin 3 of U304B. The third input to U304C is tied high through R334.

Line input power problems are detected by U303A. The inverting input to U303A is +2.15V, derived by dividing the +5VREF supply through resistors R337 and R336. The non-inverting input to U303A is proportional to the raw DC output of rectifier CR302. This raw DC voltage (approximately 31 Vdc) is divided through resistors R300 and R341. For normal operation the non-inverting input to U303A is held at +7.84 volts. This holds the output of the comparator at + 5 V. A drop in the line voltage will cause a corresponding drop in the raw DC voltage. When the raw DC voltage drops to approximately 8.5 Vdc, the output of U303A will go low, indicating a power line problem.

6-21 BEEP

The audible output of the 3488A is also contained on the power supply board. This circuit is composed of Q302, R343, CR304 and SP300. SP300 is connected in the collector lead of Q302. The emitter lead of Q302 is connected directly to the +5V supply. The base of Q302 is driven by a signal, called BEEP, from the controller. This signal is a gated 1 kHz square wave. Q302 will conduct during the negative portion of the signal and so allow current to flow through the coil of SP300. CR304 protects the circuit from inductive kickback when Q302 is turned off.

6-22 POWER SUPPLY TROUBLESHOOTING

To troubleshoot the power supply the top cover and the keyboard should be removed (the keyboard need not be disconnected). A procedure to remove the top cover and the keyboard is given in Chapter 5. Once the top cover and keyboard has been removed it is not necessary to remove the power supply printed circuit board from the mainframe to troubleshoot the supply.

The power supply provides +5 Vdc to the rest of the instrument. Additionally, two signals to the controller originate on the power supply board (POK and PON). The power supply receives one input from the controller (BEEP).

6-23 Test Equipment Required

These troubleshooting procedures require the use of the following test equipment.

Multimeter HP 3478A or equivalent

Oscilloscope HP 1741A or equivalent

6-24 Isolating The Power Supply

The power supply can be isolated from the rest of the instrument and still operate. To isolate the power supply, remove the line input power and disconnect the white cable between the power supply printed circuit board and the backplane printed circuit board (refer to Figure 5-3). Take care not to excessively flex the cable. This action completely isolates the power supply from the instrument. The line input power may now be reapplied.

6-25 Loading The Power Supply

When disconnected, the power supply may be loaded by placing a 39 ohm resistor between TP3 and TP4. A correctly operating supply will drive this load.

6-26 Initial Checks

1. Turn on the instrument and check the display. At turn-on, the display should show the lazy T. Pressing any key in the center keypad of the keyboard should result in that key name appearing in the display.

If the display shows ERROR 16, the instrument beeps continuously, or the instrument beeps periodically a problem may exist in the POK circuitry. Troubleshooting the POK circuitry is described in Section 6-30.

If the display shows undefined characters, fading characters, or intermittent characters a problem may exist in the PON circuitry. Troubleshooting the PON circuitry is described in Section 6-29.

If no display is present, the power supply may not be functioning. Check the fuse. A procedure for checking the fuse is given in Chapter 2. If the fuse continuously blows when power is applied, perform the Blown Fuse troubleshooting procedure in Section 6-29. If the fuse is good and no display is present, perform Step 2.

2. Check the +5 Vdc output of the power supply. It will be necessary to remove the 3488A top cover to check the power supply. A cover removal procedure is given in Chapter 5. Figure 6-2 shows the ground and TP4 test points. Connect the positive lead of the voltmeter to TP4 and the negative lead to ground (TP3). The voltmeter should indicate +5.1 Vdc, ± 0.10 Vdc. If the voltage indicated is within the specification, check the +5 Vdc output (at TP4) with an oscilloscope for noise on the supply. Noise should be less than 65 mV peak-to-peak.

If the voltage is not +5.1 Vdc, proceed to step 3.

- 3. Isolate the power supply from the instrument by removing the white cable connecting the power supply to the backplane. Be careful not to excessively flex the cable. This cable is shown in Figure 5-3. If the +5.1 Vdc output, at TP4, is now +5.1 Vdc go to Step 4. If the supply is still not +5.1 Vdc, perform the Failing +5.1 Vdc procedure in Section 6-27.
- 4. Load the power supply by installing a 39 ohm resistor between TP3 and TP4 on the power supply board. If the +5.1 Vdc output at TP4 is bad, perform the Failing +5.1 Vdc procedure in Section 6-27 with the supply loaded. If the +5.1 Vdc output is good, the problem does not exist on the power supply board. The power supply output is being excessively loaded by something external to the supply.

6.27 Failing +5 Vdc

- 1. When the + 5 Vdc output has been determined to be at fault, as described in Initial Checks Section 6-26, check the raw dc voltage. This is the output of CR302. The raw dc should be +31 Vdc. If the raw dc is not present, check the ac input to CR302 at J300 (the white three-pin connector). The two brown leads in J300 should have approximately 25 Vac rms across them. If not, troubleshoot CR302, T1, S2, S1, and the line input filter. If the raw dc is present, proceed to step 2.
- 2. Check the +5 VR supply. This supply is output from U301. The +5 VR supply should be checked at pin 2 of U301. The supply should be +5 Vdc, ± 0.05 Vdc. This +5 V is only used on the power supply board. If the voltage is not +5 Vdc, troubleshoot U301, R304, R303 and C302. If the supply is +5 Vdc, proceed to step 3.
- 3. At this point, the power supply internal voltage has been determined to be operational. It is now necessary to determine if the switching regulator is operational. Measure the voltage level at pin 3 of U300. The voltage level should be 31 Vdc. If pin 3 of U300 is at 31 Vdc, check the level at pin 1 of U300. Pin 1 should be at ground potential. If pin 1 is at ground potential, and pin 3 is at 31 Vdc, and there is not a short on the output of U300, then U300 needs to be replaced.

6-28 Blown Fuse

Check for direct shorts in the primary and secondary of T1 with an ohm meter. If no shorts are found, remove J300 from the power supply board and check for shorts in C300, CR302, and C301.

6-29 PON Troubleshooting

PON is a wake-up signal to the controller. When functioning correctly, PON is held high for approximately 0.47 seconds after the power supply is operating. The controller begins operation when PON goes low. A detailed description of the operation of the PON circuitry is given in the Theory Of Operation, beginning at Section 6-19.

1. Apply power to the instrument. Check the voltage at pin 8 of U304C. This voltage should be 0 Vdc. If the voltage is 0 Vdc and the controller will not wake-up, use an oscilloscope to check pin 8. The line should be high for approximately 0.47 seconds after line power has been cycled. If the line never goes high the controller cannot wake-up correctly. Troubleshoot the circuitry associated with U300 and U305 while cycling power.

If the voltage is not 0 Vdc, proceed to Step 2.

- 2. Check the voltage at pin 10 of U304C. This voltage should be +5 Vdc. If it is not + 5 Vdc, troubleshoot U300. If the voltage is + 5 Vdc, proceed to step 3.
- 3. Check the voltage at pin 11 of U304C. This voltage should be +5 Vdc. If it is not + 5 Vdc, troubleshoot C316, R346, and U305. If the voltage is +5 Vdc, troubleshoot U304C and R334.

6-30 POK Troubleshooting

POK is a status line to the controller. POK indicates the status of the reference voltage (+5 VREF) and the line input power. When POK is low, the controller assumes the power supply is functioning normally. If POK is high the controller will display ERROR 16. Because POK is used to indicate line input power problems such as brown-outs, the POK pulse is stretched to allow the controller time to scan the status line.

- 1. Apply power to the instrument and measure the voltage at pin 6 of U304B. This voltage should be 0 V. If the voltage is 0 V, POK is probably functioning correctly. If the voltage is not 0 V, proceed to Step 2.
- 2. Check the voltage at pin 4 of U304B. This voltage should be +5 Vdc. If the voltage is +5 Vdc, proceed to Step 3.
- 3. Check the voltage at pin 5 of U304B. This voltage should be +5 Vdc. If the voltage is not +5 Vdc, troubleshoot R347, U303A, R348, R300, R337, R338, C302, R304, R303, U301 and R341. If the voltage is +5 Vdc, proceed to Step 4.
- 4. Check the voltage at pin 3 of U304B. This voltage should be +5 Vdc. If the voltage is not +5 Vdc, troubleshoot U305, C317, R345, U300, U304A and R334. If the voltage is +5 Vdc, troubleshoot U304B.

6-31 CONTROLLER THEORY OF OPERATION

6-32 Introduction

A basic block diagram for the controller is shown in Figure 6-4. The Oscillator provides a 4MHz square wave to the Primary Functions and the HP-IB section. In the Primary Functions the 4MHz square wave is divided by four and used as the master clock for the rest of the controller.

The Backplane Interface section controls the flow of data and commands between the controller and the backplane. All option cards are controlled through the backplane. By latching the data and commands, the Backplane Interface allows the use of a static backplane. This reduces radiated noise from the HP3488A.

The Interrupt Logic interfaces devices generating interrupts with the microprocessor. Interrupts are generated for periodic keyboard scans, periodic display updates, external increments from a digital I/O card, from the HP-IB circuitry, or from the power supply.

The Keyboard, Display, and Address Logic allows the microprocessor to scan the keyboard, control the display, and read the current HP-IB address.

The Primary Functions section contains the minimum set of hardware required to fetch and execute instructions. The microprocessor, ROM, and RAM is contained in this section.

The type of microprocessor used in the Primary Functions requires that all devices on the data bus be memory mapped. To facilitate this type of system an Address Decoding section is used. Address Decoding selects the active devices based upon the address information output from the microprocessor.

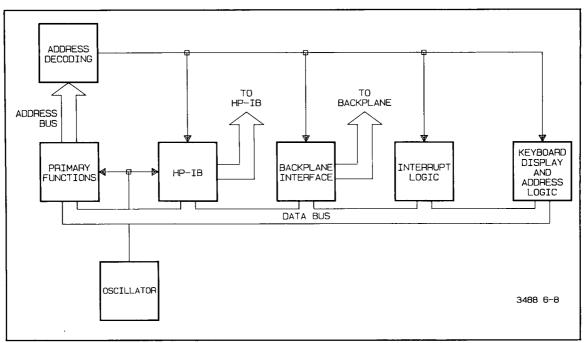


Figure 6-4 Controller Basic Block Diagram

The HP-IB section interfaces the HP3488A to the system controller. This section is bidirectional. Both data and control information is handled by this section. The HP-IB section is clocked by the 4MHz clock from the Oscillator. The HP-IB section is controlled by the output of the Address Decoding section.

6-33 Primary Functions

A simplified schematic of the Primary Functions is shown in Figure 6-5. At the center of the Primary Functions is the microprocessor, U423. This IC will be referred to as the mpu in this discussion. The mpu communicates over a 16 bit address bus and an 8 bit data bus. The address bus provides 64 Kilobytes of addressable memory space.

The mpu is driven by a 4 MHz square wave provided by the oscillator. From this input the mpu derives two clocks. These clocks operate at a 1 MHz rate and are identical. The two clocks are labeled Q and E. The Q clock (quadrature clock) leads the E clock (main clock) by 90°. For operations within the controller, the E clock is a read operation clock and the Q clock is a write operation clock.

The E clock is gated with the R/W line from the processor to generate the READ strobe. The Q clock is gated with the E clock and the inverted R/W line to generate the WRITE strobe. These two strobes are used throughout the controller to set the read or write operations on the data bus.

The instruction set for the mpu is contained in the ROM. This ROM is enabled by two lines from the Address Decoding section; CE1 and ROM. The ROM output is buffered before it is sent on the data bus. This buffering is necessary because the ROM cannot source enough current to drive the data bus. The ROM Buffer is also enabled by the ROM line from the Address Decoding section. The READ line controls the output timing of the ROM Buffer.

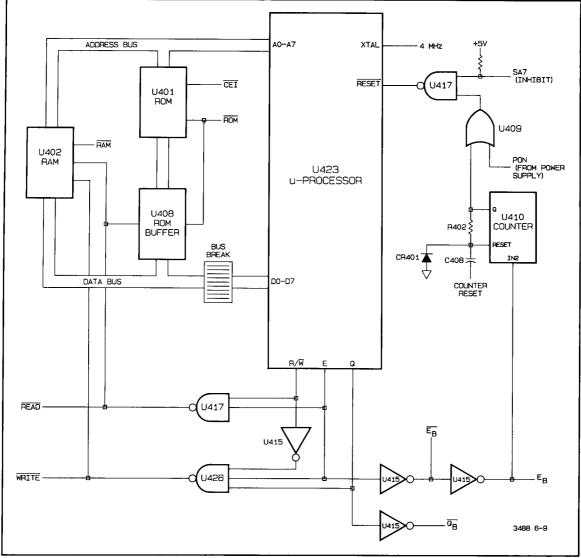


Figure 6-5 Primary Functions Simplified Schematic

The RAM is used to store time delay constants, stored set-ups and scan lists for the mpu. The RAM is enabled by the RAM line from the Address Decoding section. The RAM also uses the READ and WRITE lines to control the direction of the data flow.

The Bus Break is used for service purposes. This is a series of jumpers, packaged in a DIP and installed in an IC socket. The Bus Break is removed to isolate the mpu from the data bus. This will allow the mpu to cycle through all addresses to permit testing of the other devices on the bus.

The mpu has an input labeled RESET. A low on this line caused the mpu to perform an initial power on reset. This line can be set low by two sources; PON from the power supply and a line from the counter.

The PON line is a pulsed-high signal from the power supply. It indicates that all the power supplies are up and operating. The pulse is at least 150 milliseconds in duration. This is the initial power-on wake up cycle for the controller. The high pulse is inverted by the action of the nand gate, U417, and applied to the mpu.

The counter, U410, output can also force the mpu to perform a power-on reset. This counter is a simple up-counter and is driven by the buffered E clock (Eb). The counter increments at each E clock. The counter provides a reset in the case of a software failure. In normal operation, the mpu periodically sends a pulse to the counter on the line marked COUNTER RESET. This resets the counter and begins the up-count over. Should the mpu become lost, the counter reset pulse will not occur. The counter will then reach the maximum count and set the Q output high. This high will cause a power-on reset of the mpu through U409 and U417. The periodic reset of the counter is coupled through a capacitor. This coupling prevents a stuck line from continually resetting the counter and preventing a required mpu reset. The diode is provided to prevent negative overshoot of the counter reset line. By connecting the counter reset and Q output through a resistor, R402, the reset line is held low as long as the Q output is low.

6-34 Address Decoding

A simplified schematic of the Address Decoding is shown in Figure 6-6. A memory map is also shown on that figure. The type of mpu used in the controller requires that all devices be memory mapped. As shown on the memory map, memory is divided into two large portions of 32 Kilobytes each. The first portion is reserved for ROM. The remaining 32 Kilobytes is divided into four equal portions of 8 Kilobytes each. The first of these subdivisions is not used in the current instrument revision. The remaining three portions allocate memory for the RAM, the backplane, and other peripherals to the mpu.

The most significant address line, A15, selects either of the two large 32 Kilobyte portions of the memory. When A15 is high the ROM portion of the memory is selected.

The ROM requires two enabling inputs to be selected; ROM and CE1. The upper portion of U403 generates the CE1 pulse. U403 is a dual 2 to 4 decoder. The A15 line is connected to both the A and B inputs of the first half of U403. The Y0, Y1 and Y2 outputs are not used. When A15 is high The Y3 output is selected. The output is gated by the E clock. The Y3 output is the CE1 line.

A15 is inverted by U415 and used as the ROM enable line. When A15 is high, the ROM line is set low and enables the ROM and ROM Buffer.

When address line A15 is set low, the lower portion of the memory map is selected. The second half of U403, a 2 to 4 decoder, divides the lower portion of the memory into four 8 Kilobyte pieces. The A input is connected to address line A13 and the B input is connected to address line A14. When both A13 and A14 are set high, the 2Y3 output is active. This output is not connected. On the memory map this area is marked NOT USED.

When A14 is high and A13 is low the 2Y2 output is active. This output is the line RAM and enables the RAM, U402.

When A14 is low and A13 is high the 2Y1 output is active. This address selects the backplane portion of the memory. The 2Y1 output is routed to three places; the back plane data buffer as BP, to U413 as an enable, and to U409. At U409 the line is combined with the Qb clock, inverted by U417, and output as BPS enables the backplane data latch and address latch for write operations to the backplane.

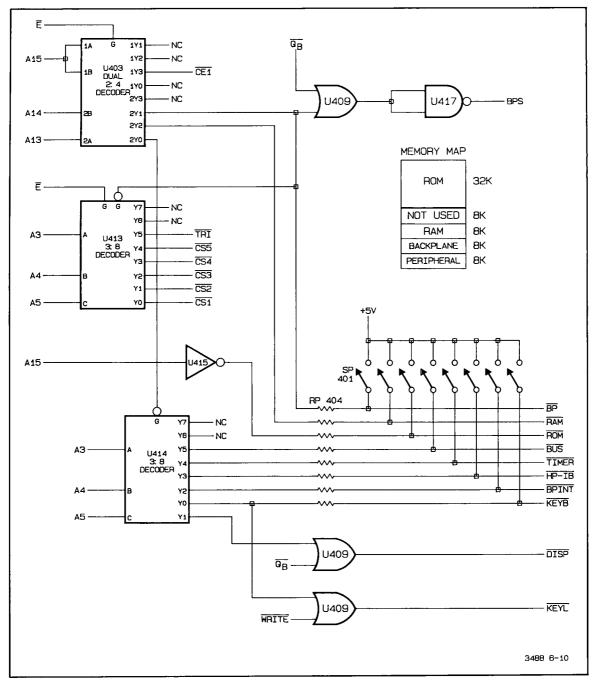


Figure 6-6 Address Decoding Simplified Schematic

U413 decodes the A3, A4, and A5 address lines into option card slot select lines. U403 is enabled when the backplane portion of memory is selected and by the E clock. The outputs of U413 enable specific option card slots for read operations. These outputs, CS1, CS2, CS3, CS4 and CS5, are used as enable lines to each specific option card slot. Additionally, the line TRI is output from this decoder. TRI is used to enable the outputs of the option cards for read operations.

When A14 and A13 are low the 2Y0 output of U403 is active. This selects the peripheral portion of memory. This output is used as an enable line for the 3 to 8 decoder, U414. U414 decodes the A3, A4 and A5 address lines into enabling strobes for peripheral devices on the bus.

The peripheral devices enabled by U414 and the associated enabling lines are; the HP-IB Address Buffer by BUS, the Timer by TIMER, the HP-IB Encoder by HP-IB, The Backplane Interrupt Buffer by BPINT, and the Keyboard Buffer by KEYB. The Y0 output of U414 (KEYB) is also gated with WRITE and generates the KEYL strobe. KEYL controls the keyboard scan drive lines. The Y0 output of U414 is gated with the Qb clock and generates the DISP strobe. DISP controls the transfer of data to the display during write operations.

RP404 and SP401 are included for troubleshooting purposes. By closing one of the switches in SP401, the connected strobe line is forced to the high state. This action disables the selected strobe and prevents the device reading from or writing to the bus. One device at a time may be disabled or all devices but one may be disabled. RP404 prevents damage to U403, U413 or U414 when troubleshooting.

6-35 Backplane Interface

A simplified schematic of the backplane interface is shown in Figure 6-7. The Backplane Interface controls the direction and timing of data flow on the backplane, addresses the option card registers, and sets read, write or 3-state operations of the option cards.

U421 and U422 latch and buffer the backplane data bus from the controller data bus. This action permits the backplane data bus to be static and results in a decreased radiated noise level from the backplane. When not following other commands, however, the controller will periodically scan all backplane slots.

U422 is the buffer and is enabled by the BP line from the Address Decoding section and the READ strobe. When both BP and READ are low, data is transferred from the backplane data bus to the controller data bus.

U421 is a latch. U421 latches the controller data bus on the backplane data bus. The latch is enabled by the R/W strobe from the mpu and the BPS line. The BPS line will be set high when the backplane portion of memory has been specified. The R/W strobe is set low by the mpu for write operations. This strobe is inverted by U415 and applied to U420. The output of U420 will be high, enabling U421, when both the BPS and R/W are high.

U421 output is also controlled by an output enable strobe. This strobe is generated by combining SERV and R/Wb in U420. The output is enabled when the OE input is low. The R/Wb will be high for read operations and low for write operations. The SERV line is tied high. This line can only be set low by the deliberate placement of a service test jumper. The OE input of U421, then, follows the R/Wb line. When R/Wb is low the output of U421 is enabled. Grounding the SERV line forces the mpu into a firmware service routine. This routine is used to check backplane and option cards. Grounding SERV enables the output of U421.

U411 and U412 latch the three least significant address lines, A0, A1 and A2, and the R/W line on the backplane. These three lines and the R/W line are latched in U411 by the Q clock. The three latched address lines are output from U411 to control register selection in the HP-IB Encoder.

U412 latches the four lines to the backplane. U412 latches the data when the BPS line is set high (set high by Address Decoding to select the backplane portion of memory).

On the backplane, the three address lines and the R/W line are used by each option card to select appropriate IC's to send or receive data.

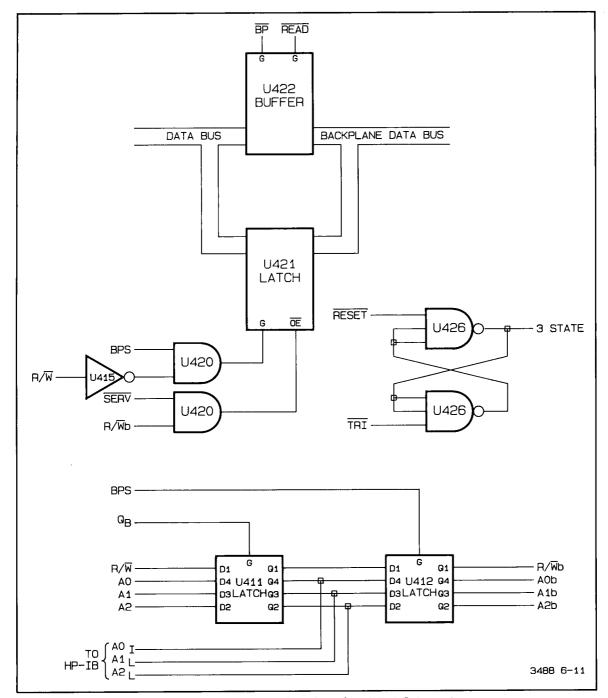


Figure 6-7 Backplane Interface Simplified Schematic

Also latched on the backplane is the 3-STATE line. The two portions of U426 operate as a S-R flip-flop. There are two signals used to control the flip-flop; RESET and TRI. RESET holds the 3-STATE line high at instrument wake-up to ensure that all option cards are in the three state mode and can not send data on the bus. Ultimately, RESET is controlled by the PON line from the power supply. The TRI line forces 3-STATE low and enables the option card drivers for write operations. Once 3-STATE has been set low it remains low unless primary power is cycled, U410 interrupts the mpu, or test point SA7 is grounded.

6-36 Interrupt Logic

A simplified schematic of the Interrupt Logic is shown in Figure 6-8. There are two types of interrupt that can be generated; a hardware interrupt and a firmware interrupt.

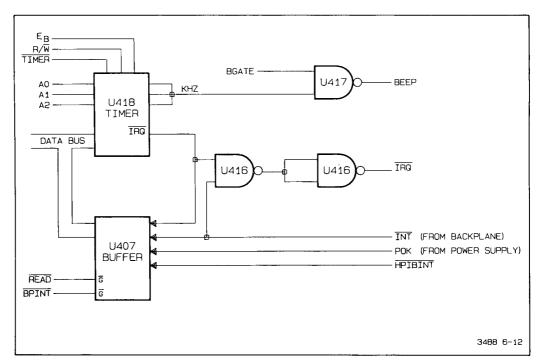


Figure 6-8 Interrupt Logic Simplified Schematic

U418 is a programmable timer module that provides variable system time intervals. Contained in U418 are three 16 bit binary counter, three corresponding control registers, and a status register. U418 is enabled by the TIMER strobe from the Address Decoding section. The R/W strobe is used to control the read and write operations of the timer. The three least significant address lines are used to address the control registers.

The timer performs several tasks in the controller. It provides periodic interrupts to the mpu that are used to initiate keyboard scans and display updates. The timer also controls the software delay function (see section 3-19 Delay). Another output from the timer is a 1 KHz square wave used to drive the beeper.

The KHz output of the timer is gated with BGATE at U417. BGATE is set high to allow the beeper to operate. When BGATE is high the KHz signal is sent directly to the beeper. The beeper is located on the Power Supply circuit board.

The timer interrupt is transmitted to the mpu through nand-gate U416. The IRQ output is set low to indicate the interrupt. Another interrupt to the mpu comes from the backplane. This signal is labeled INT and is generated by the external increment function on a 44474A 16 Channel Digital I/O Card.

U407 acts as a source interrupt buffer. The buffer is active when BPINT and READ are low. There are four inputs to the buffer; IRQ from the timer, INT from the backplane, POK from the power supply, and HPIBINT from the HP-IB encoder. U407 allows the mpu to identify devices that are interrupting or to poll devices for a possible interrupt.

6-37 Keyboard, Display, and Address Logic

The keyboard, display, and address logic is shown on Figure 6-11, the controller schematic.

The keyboard is a 6X8 matrix. Two ICs are used to scan the keyboard; U405 and U404. U405 is a latch. This latch is enabled by KEYL during write operations. The latch is used to strobe across the 6 lines of the keyboard.

U404 is a buffer. U404 is enabled by KEYB and READ. This buffer reads the 8 keyboard lines onto the data bus. By the action of the latch and the buffer, the mpu can tell which key has been pressed.

U405 also outputs the BGATE signal. This signal is used to control the beeper on the power supply board. When BGATE is high the beeper will operate.

U406 is the display latch. U406 is enabled by the DISP line. U406 latches the data bus to the display. Additionally, two outputs of U406 are used for signature analysis.

U419 is the address buffer. U419 is enabled by the BUS and READ lines. U419 buffers the status of the five address switches and SRQ switch in SP402. Additionally, the SERVICE FUNCTIONS test point is buffered by U419. When SERVICE FUNCTIONS test point is grounded, the mpu will enter a special service routine designed to test the plug-in cards. The use of this test point is described in each plug-in card's troubleshooting section.

6-38 CONTROLLER TROUBLESHOOTING

Service access to the Controller printed circuit board assembly requires that the instrument top cover be removed. Cover removal is described in Chapter 5. The controller board shield must also be removed (all option cards must be removed from slots 4 and 5 to access the shield). The shield removal is depicted in Figure 5-2.

6-39 Initial Set-Up

The following troubleshooting procedures require that the Controller be set to a known state. Before applying power to the Controller ensure that the bus break is installed in its socket (RP409). All switches on SP401 should be in the OPEN position. The HP-IB address should be set to the factory address of 9. Setting the HP-IB address is described in Section 2-16. The power on SRQ switch should be set off, as described in Section 2-17. All plug-in option cards should be removed from the mainframe.

6-40 Test Equipment Required

These troubleshooting procedures require the following test equipment.

Signature Multimeter HP 5005A or equivalent

The HP 5005A Signature Multimeter is a multipurpose instrument. In addition to signature analysis this instrument has the capability of measuring frequency, voltages, time intervals, and resistance. If an HP 5005A is not available, it will be necessary to have a digital multimeter, a frequency counter, and a signature analyzer to troubleshoot the controller board.

6-41 Initial Checks

Front panel display symptoms of a failing controller include no display, fading displays, or randomly lit segments in the display. If one or more segments in the display are consistently missing, suspect the display itself. If the instrument does not respond to any front panel keys, a controller problem could exist. If one or more keys (typically a row or column) do not function, the keyboard should be suspected.

- 1. Measure the +5 Vdc on the controller board. Connect the multimeter between ground at test point SA4 and the positive end of C401. The voltage should measure +5 Vdc ± 0.5 Vdc. If the voltage is not +5 Vdc, troubleshoot the power supply, the supply interconnections to the controller board, or A40L401. If the voltage is within the limits, proceed to Step 2.
- 2. Check the controller main clock (E). Connect the frequency counter between ground (SA4) and test point SA5. This test point should show a clock at a frequency of 1 MHz. If the clock is present, proceed to Step 3. If the clock is not present, connect the frequency counter to U416 pin 8. This should be clock at a frequency of 4 MHz. If this clock is not present, troubleshoot U416, Q401, R404, R405, R403, C412, C416, and Y401. If the 4 Mhz clock is present, check for the presence of a clock at U423 pin 34. This should be a 1 MHz clock. If the clock is present, troubleshoot the Q and E clocks from the microprocessor through the buffers in U415. If the clock is not present, U423 is probably at fault.
- 3. Check the controller quadrature clock (Q). Measure the frequency of this clock at U415 pin 2. This clock should be 1 MHz. If the clock is not present, troubleshoot U415 and U423. If the clock is present proceed to Step 4.
- 4. Check the microprocessor interrupts. Measure the voltage at U423 pin 2. This point is driven low by grounding test point SA8 and forces the microprocessor into a service routine. This voltage should be +5 Vdc. If the voltage is not +5 Vdc, troubleshoot RP403, DP402, and U420.

Measure the voltage at pin 37 of U423. This voltage should be a steady +5 Vdc. Check for any transitions on this line (when failing, some transitions take up to a second to occur). If the voltage is not +5 Vdc or there are transitions occurring, troubleshoot RP406, U417, U409, U410, R402, CR401, C408, or U405. A detailed discussion of the operation of U410 is given in the Theory Of Operation, Section 6-31.

5. At this point, the power supply to the controller, the basic clocks in the controller, and the microprocessor interrupts have been checked. Be sure the controller is set up as described in Section 6-39. Cycle power to the instrument and probe the 16 address lines and 8 data lines for activity (transitions). This is easily accomplished with the HP 5005A probe. The light in the probe tip will blink when activity is present (the HP 5005A should be set to either kHz or signature function). An oscilloscope may also be used to check for transitions.

The 16 address lines can be accessed at pins 8 through 23 of U423. All 16 address lines should show activity.

The 8 data lines are easily accessed at the pins of the bus break (RP409). All eight lines should show activity.

If either a data line or address line appears stuck (no transitions), troubleshoot the stuck line. This is a difficult task since there are many devices on each line. One method of finding stuck lines is described in Section 6-44, Stuck Line Troubleshooting.

If activity is found on each line, proceed to Step 6.

- 6. Measure the frequency of the timer output at U418 pin 27. This output should be 1 kHz. If this signal is present, although not conclusive, it indicates that the timer is able to function (the timer initiates mpu scans of keyboard, display, etc.) If the timer output is not present, troubleshoot the timer circuitry (U418).
- 7. At this point the common failures of the controller have been identified. If the problem has still not been isolated it will be necessary to use signature analysis procedures. These procedures begin in Section 6-42.

6-42 Controller Signature Analysis

The following pages describe the signature analysis procedures. Each page contains the set up procedure, the area of the controller being checked, the appropriate signatures, and general notes about the test.

The procedure has been designed to be either followed in a step by step fashion, or, if the symptoms indicate a particular area of the controller, specific signatures can be observed. In each case the set-up procedure must be followed exactly to assure compatible signatures. If the procedure is used in a step by step manner, the changes in the set-up procedure between the steps are highlighted.

During the step-by-step portion of the signature analysis tests, specific devices are enabled and their output checked. If the signatures obtained are incorrect, the device or the inputs to the device could be at fault. In the NOTES section of each signature analysis procedure step, a note directs the user to a separate sheet, labeled FAILED, where input signatures to the device are given. Between the output signatures given in the STEP and the input signatures given in FAILED, a failing device can be isolated.

In general, the signature analysis procedures described in this section make use of SWP401. This switch pack allows specific devices to be disabled. The procedures record signatures on the data bus in the controller while adding devices to the bus one at a time. For this reason, if the procedures are not followed in a step-by-step manner, the procedure itself should be half-split to isolate incorrect signatures.

Also used in the first set of procedures (SA1) is RP409. This is a series of jumpers packaged in a DIP package and installed in an IC socket. Removing RP409 from the circuit isolates the microprocessor from the data bus. Note that removing RP409 also removes the pull-up resistors from the data bus.

The Initial Checks listed in Section 6-41 should be performed prior to using signature analysis. Be sure that no option cards are installed in the mainframe during the signature analysis tests.

6-43 SA1 and SA2

There are two main signature analysis tests. These tests are labeled SA1 and SA2. The tests in SA1 test the basic hardware in the controller. SA2 tests the read and write devices in the controller. The signatures in SA1 must be correct for the SA2 tests to work. SA2 testing begins at step 7 in the procedure. Signature analysis testing of the option cards and backplane board is given in each option card chapter of this manual.

6-44 Stuck Line Troubleshooting

A common problem in digital circuits is a stuck line. A line may be stuck high, stuck low, or stuck at some arbitrary value. When a stuck line is part of an address or data bus, finding the source of the problem can be difficult. The difficulty increases as the number of devices in common with the line increases.

Isolating the sources of the stuck line (typically by unsoldering a lead of an IC), one at a time, is time consuming and may damage good parts or the circuit board. This method is, ultimately, the only real proof of a failing part. The following paragraphs describe a method that may be used to reduce the number of devices suspected of the failure to a few that can then be isolated by unsoldering.

The method described here requires the use of a high resolution, high input impedance voltmeter. A recommended voltmeter is the Hewlett-Packard Model 3456A.

This method of isolation takes advantage of the physical location of the parts on the printed circuit board. The stuck line is provided with a current source (or sink) and the voltage drop across the trace resistance is measured.

Lines that are stuck low will need a current source. Typically, a 10 Kohm resistor connected between the stuck line and the +5 Vdc supply will provide an adequate source. Lines that are stuck high will require a current sink. A 10 Kohm resistor connected between the stuck line and circuit board ground will provide a sink.

Once the necessary current paths have been provided (some paths are automatically provided by pull-up resistors on the board), each device output connected to the stuck line is probed with the voltmeter. The voltage measurements should be recorded. A change in the voltages measured can give an indication of the failing device.

For example, suppose a line in the controller data bus is stuck low. A current path is provided (through RP408) by installing RP409. The voltmeter common is connected to circuit board ground. The voltage at each device output on the stuck line is now measured. The most likely device causing the problem is the device exhibiting the lowest voltage reading to ground (due to the voltage drops across the printed circuit board traces).

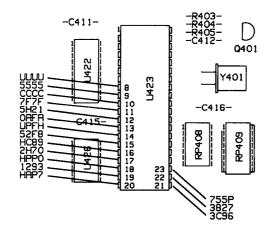
A line stuck high is checked in a similar manner. In this case an external resistor is connected between the stuck line and ground. Each device output is checked. The device exhibiting the highest voltage reading is the suspect device.

This method can only assist in the isolation of the bad device. The device must still be disconnected from the stuck line by unsoldering to prove the malfunction.

CHECKING: SA1

ADDRESS LINES (U423)

03488-66540 ERC: 2642


SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA5
- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK _ START _ STOP \
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: 0001

- 1. Pins 8 through 23 of U423 are address lines AØ through A15 respectively
- 2. If signatures are correct, perform Step 2.
- 3. If signatures are incorrect, troubleshoot U423.

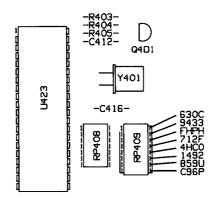
CHECKING: SA1

ROM OUTPUT (U401, U408)

03488-66540 ERC: 2642

SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:


SA5

- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK START STOP
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: 0001

- 1. Signatures represent the ROM output to the data bus.
- 2. If signatures are correct, perform Step 3.
- 3. If signatures are incorrect, troubleshoot ROM, ROM buffer, and ROM address decoding. See Failed ROM Output (SA1) for additional troubleshooting information.

CHECKING: SA1

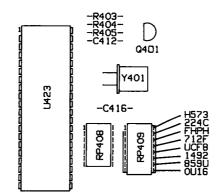
_ STOP ¯

ADDRESS BUFFER (U419)

03488-66540 ERC: 2642

SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA₅
- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK __ START


10. REMOVE RP409

11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	CLOSED
SWP401-4	CLOSED
SWP401-5	CLOSED
SWP401-6	CLOSED
SWP401-7	CLOSED
SWP401-8	CLOSED

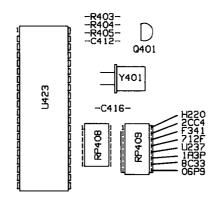
+5 Vdc: 0001

- 1. Signatures will be incorrect if SWP402 not correctly set.
- 2. If signatures are correct, perform Step 4.
- 3. If signatures are incorrect, troubleshoot U419 (address buffer) and address decoding. See Failed Address Buffer (SA1) for additional troubleshooting information.

CHECKING: SA1

BACKPLANE INTERRUPT BUFFER (U407)

03488-66540 ERC: 2642


SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA₅
- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK __ START _ STOP _
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: 0001

- 1. If signatures are correct, perform Step 5.
- 2. If signatures are incorrect, troubleshoot U407 and address decoding. See Failed Backplane Interrupt Buffer (SA1) for additional troubleshooting information.

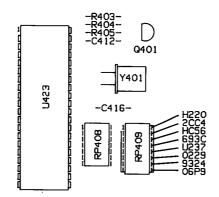
CHECKING: SA1

BACKPLANE BUFFER (U422)

03488-66540 ERC: 2642

SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA5
- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK _ START _ STOP


10. REMOVE RP409

11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7	OPEN OPEN CLOSED CLOSED OPEN OPEN CLOSED
SWP401-8	CLOSED

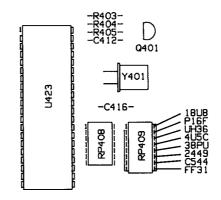
+5 Vdc: 0001

- 1. If signatures are correct, perform Step 6.
- 2. If signatures are incorrect, troubleshoot U422 and address decoding. See Failed Backplane Buffer (SA1) for additional troubleshooting information.

CHECKING: SA1

KEYBOARD BUFFER (U404)

03488-66540 ERC: 2642


SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA5
- 7. GROUND:
- SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK _ START _ STOP \
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP4U1 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	CLOSED
SWP401-4	CLOSED
SWP401-5	OPEN
SWP401-6	OPEN
SWP401-7	OPEN
SWP401-8	CLOSED

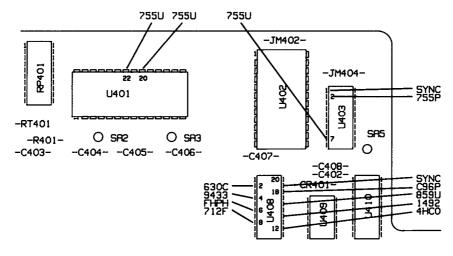
+5 Vdc: 0001

- 1. If signatures are correct, perform Step 7.
- 2. If signatures are incorrect, troubleshoot U404 and address decoding. See Failed Keyboard Buffer (SA1) for additional troubleshooting information.

FAILED ROM OUTPUT

CHECKING: SA1

ROM OUTPUT (U401, U408)


03488-66540 ERC: 2642

SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
 - SA₅
- 7. GROUND: SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK _ START _ STOP _
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8 (see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: 0001

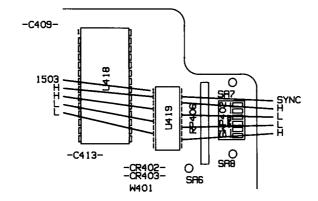
- 1. "sync" indicates a node with no meaningful signature. These nodes are synchronous with the SA clock. Check for activity only.
- 2. For failing signatures, troubleshoot using Figure 6-11 (Controller Schematic).

FAILED ADDRESS BUFFER

CHECKING: SA1

ADDRESS BUFFER (U419)

03488-66540 ERC: 2642


SET-UP

- 1. REMOVE ALL OPTION CARDS
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA1
- 5. STOP/QUAL: SA1
- 6. CLOCK:
- SA5
- 7. GROUND: SA4
- 8. JUMPER SA7 TO GROUND (SA4)
- 9. POLARITY: CLOCK _ START _ STOP \
- 10. REMOVE RP409
- 11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: 0001

- 1. "sync" indicates a node with no meaningful signature. These nodes are synchronous with the SA clock. Check for activity only.
- 2. "H" indicates pin is high.
- 3. "L" indicates pin is low.
- 4. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED BACKPLANE INTERRUPT BUFFER

CHECKING: SA1

BACKPLANE INTERRUPT (U407)

03488-66540 ERC: 2642

SET-UP

1. REMOVE ALL OPTION CARDS

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA1

5. STOP/QUAL: SA1

6. CLOCK:

SA₅

7. GROUND:

SA4

8. JUMPER SA7 TO GROUND (SA4)

9. POLARITY: CLOCK _ START _ STOP \


10. REMOVE RP409

11. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	CLOSED
SWP401-4	CLOSED
SWP401-5	OPEN
SWP401-6	CLOSED
SWP401-7	CLOSED
SWP401-8	CLOSED

+5 Vdc: 0001

- 1. "sync" indicates a node with no meaningful signature. Node is synchronous with the SA clock. Check for activity only.
- 2. "H" indicates pin is high.
- 3. "L" indicates pin is low.
- 4. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED BACKPLANE BUFFER

CHECKING: SA1

BACKPLANE BUFFER (U422)

03488-66540 ERC: 2642

SET-UP

1. REMOVE ALL OPTION CARDS

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA1

5. STOP/QUAL: SA1

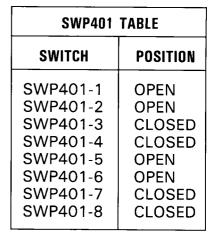
6. CLOCK:

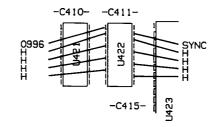
SA5

7. GROUND:

SA4

8. JUMPER SA7 TO GROUND (SA4)


9. POLARITY: CLOCK _ START _ STOP


10. REMOVE RP409

11. SET SWITCHES SWP401-1 THRU 8

(see Table)

+5 Vdc: 0001

- 1. "sync" indicates a node with no meaningful signature. Node is synchronous with the SA clock. Check for activity only.
- 2. "H" indicates pin is high.
- 3. "L" indicates pin is low.
- 4. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED KEYBOARD **BUFFER**

CHECKING: SA1

KEYBOARD BUFFER (U404)

03488-66540 ERC: 2642

SET-UP

1. REMOVE ALL OPTION CARDS

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA1

5. STOP/QUAL: SA1

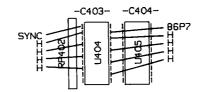
6. CLOCK:

SA₅

7. GROUND:

SA4 8. JUMPER SA7 TO GROUND (SA4)

9. POLARITY: CLOCK __ START __ STOP _


10. REMOVE RP409

11. SET SWITCHES SWP401-1 THRU 8

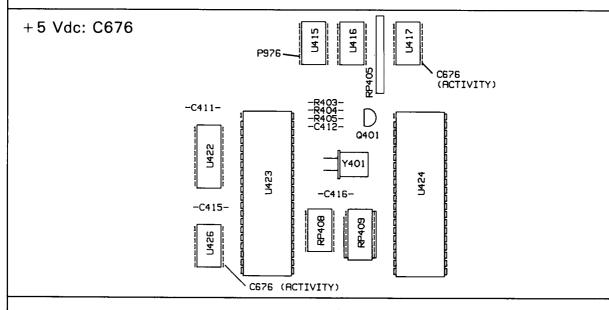
(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN CLOSED CLOSED OPEN OPEN OPEN CLOSED

+5 Vdc: 0001

- 1. "sync" indicates a node with no meaningful signature. Node is synchronous with the SA clock. Check for activity only.
- 2. "H" indicates pin is high.
- 3. "L" indicates pin is low.
- 4. Troubleshoot using Figure 6-11 (Controller Schematic).

CHECKING: SA2


READ, WRITE, R/W

03488-66540 ERC: 2642

SET-UP

- 1. SET ALL SWP401 SWITCHES OPEN
- 2. INSTALL RP409
- 3. HP-IB ADDRESS SET TO 09
- 4. POWER ON SRQ SET TO OFF
- 5. START/ST/SP:SA2
- 6. STOP/QUAL: SA3
- 7. CLOCK:
- SA5
- 8. GROUND:
- SA4
- 9. POLARITY: CLOCK _ START _ STOP_
- 10. APPLY POWER THEN GROUND SA8
- 11. SET SWITCHES SWP401-1 THRU 8 (see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	CLOSED
SWP401-3	CLOSED
SWP401-4	CLOSED
SWP401-5	CLOSED
SWP401-6	CLOSED
SWP401-7	CLOSED
SWP401-8	CLOSED

- 1. Initially, all SWP401 switches must be set open and power must be applied before grounding SA8.
- 2. Signatures on U415 represents R/W.
- 3. Signature on U417 represents READ, probe should show activity at this node.
- 4. Signature on U426 represents WRITE, probe should show activity at this node.
- 5. If signatures are correct, perform Step 8.
- 6. If signatures are incorrect, troubleshoot the READ, WRITE and R/W circuits, additional troubleshooting information is given in Failed READ, WRITE, R/W (SA2).

CHECKING: SA2

TIMER (U418)

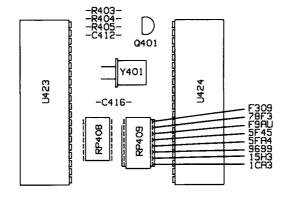
03488-66540 ERC: 2642

SET-UP

- 1. INSTALL RP 409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:

SA5

7. GROUND:


SA4

- 8. POLARITY: CLOCK __ START __ STOP __/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	OPEN
SWP401-4	CLOSED
SWP401-5	CLOSED
SWP401-6	CLOSED
SWP401-7	CLOSED
SWP401-8	CLOSED

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 9.
- 3. If signatures are incorrect, troubleshoot U418. See Failed Timer (SA2) for additional troubleshooting information.

CHECKING: SA2

HP-IB (U424)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

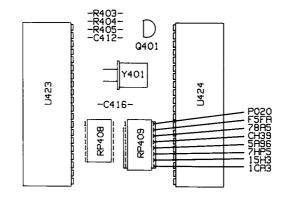
4. START/ST/SP:SA2

5. STOP/QUAL: SA3

6. CLOCK: SA

7. GROUND: SA4

8. POLARITY: CLOCK __ START __ STOP__


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-7	OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED
SWP401-8	CLOSED

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 10.
- 3. If signatures are incorrect, troubleshoot U424, U425 and U427. See Failed HP-IB (SA2) for additional troubleshooting information.

CHECKING: SA2

BACKPLANE LATCH (U421)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA2

5. STOP/QUAL: SA3

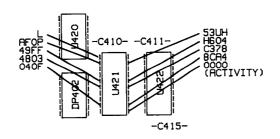
6. CLOCK:

SA₅

7. GROUND:

SA4

8. POLARITY: CLOCK _ START _ STOP__


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

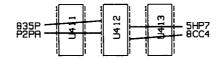
SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 11.
- 3. If signatures are incorrect, troubleshoot U421 using Figure 6-11 (Controller Schematic). Input signatures to U421 pins, 3, 4, 7, 8, 13, 14, 17, and 18 are the same as the signatures obtained in Step 9.
- 4. "L" indicates pin is low.

CHECKING: SA2

ADDRESS LATCH (U412)


03488-66540 ERC: 2642

SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:
- SA5
- 7. GROUND:
- SA4
- 8. POLARITY: CLOCK __ START __ STOP__/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8 (see Table)

SWP401 TABLE		
SWITCH	POSITION	
SWP401-1	OPEN	
SWP401-2	OPEN	
SWP401-3	OPEN	
SWP401-4	OPEN	
SWP401-5	CLOSED	
SWP401-6	CLOSED	
SWP401-7	CLOSED	
SWP401-8	CLOSED	

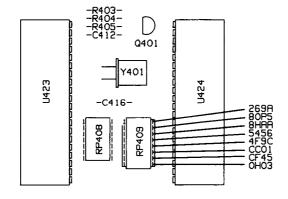
+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 12.
- 3. If signatures are incorrect, troubleshoot U411 and U412. See Failed Address Latch (SA2) for additional troubleshooting information.

CHECKING: SA2

BACKPLANE BUFFER (U422)

03488-66540 ERC: 2642


SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
 5. STOP/QUAL: SA3
- 6. CLOCK: SA5 7. GROUND: SA4
- 8. POLARITY: CLOCK __ START _ STOP __/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	OPEN
SWP401-4	OPEN
SWP401-5	OPEN
SWP401-6	OPEN
SWP401-7	CLOSED
SWP401-8	CLOSED

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 13.
- 3. If signatures are incorrect, troubleshoot U422. See Failed Backplane Buffer (SA2) for additional troubleshooting information. The Backplane Buffer was statically tested in SA1 Step 5.

CHECKING: SA2

RAM (U402)

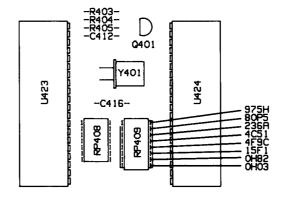
03488-66540 ERC: 2642

SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:

SA₅

7. GROUND:


SA4

- 8. POLARITY: CLOCK _ START _ STOP _/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	OPEN
SWP401-4	OPEN
SWP401-5	OPEN
SWP401-6	OPEN
SWP401-7	OPEN
SWP401-8	OPEN

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct, perform Step 14.
- 3. If signatures are incorrect, troubleshoot U402. See Failed RAM (SA2) for additional troubleshooting information.

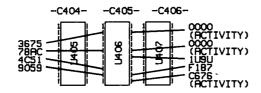
CHECKING: SA2

DISPLAY DRIVER (U406)

03488-66540 ERC: 2642

SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:


SA5

- 7. GROUND:
- SA4
- 8. POLARITY: CLOCK __ START __ STOP__/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7	OPEN OPEN OPEN OPEN OPEN OPEN OPEN
SWP401-8	OPEN

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. If signatures are correct and display does not work, display or display cable should be suspected.
- 3. Input signatures to U406 are the same as signatures obtained in Step 13.
- 4. If display works and signatures are correct, perform Step 15.

CHECKING: SA2

KEYBOARD DRIVER (U405)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA2

5. STOP/QUAL: SA3

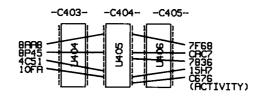
6. CLOCK:

SA5

7. GROUND:

SA4

8. POLARITY: CLOCK START STOP_✓


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7	OPEN OPEN OPEN OPEN OPEN OPEN OPEN
SWP401-7 SWP401-8	OPEN

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. Correct signatures may be traced to the inputs of U404 through the keyboard. Use Figure 6-11 (Controller Schematic) to identify the signature, U404 input, and key to press.
- 3. Input data bus signatures are the same as signatures obtained in Step 13.
- 4. If signatures are correct and keyboard functions, perform Step 16.

CHECKING: SA2

BEEP DRIVE (U417)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA2

5. STOP/QUAL: SA3

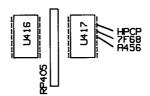
6. CLOCK:

SA₅

7. GROUND:

SA4

8. POLARITY: CLOCK __ START _ STOP__/


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1	OPEN
SWP401-2	OPEN
SWP401-3	OPEN
SWP401-4	OPEN
SWP401-5	OPEN
SWP401-6	OPEN
SWP401-7	OPEN
SWP401-8	OPEN

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. Pin 11 is output to Power Supply circuit board to drive beeper. If signature at pin 11 is correct and beep does not function, troubleshoot beep circuitry on Power Supply.

FAILED READ, WRITE, R/W

CHECKING: SA2

READ, WRITE, R/W

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

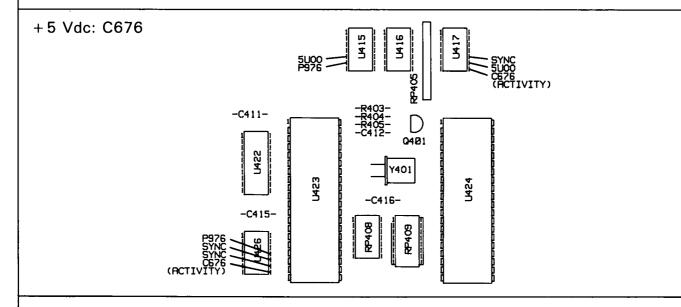
2. HP-IB ADDRESS SET TO 09

- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:

SA5

7. GROUND:

SA4


8. POLARITY: CLOCK __ START _ STOP__

9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED CLOSED

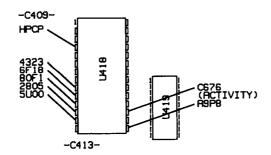
- 1. Power must be applied before grounding SA8.
- 2. Check signatures on U415 first, the other signatures require that these be correct.
- 3. Troubleshoot using Figure 6-11 (Controller Schematic).
- 4. "sync" indicates a node with no meaningful signature. Node is synchronous with the SA clock. Check for activity only.

FAILED TIMER

CHECKING: SA2

TIMER (U418)

03488-66540 ERC: 2642


SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK: SA5
- 7. GROUND: SA4
- 8. POLARITY: CLOCK _ START _ STOP _/
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7	OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED
	,

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. Inputs are pins 10, 11, 12, 13, 15 and 17. These signatures must be correct for other signatures to be correct.
- 3. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED HP-IB

CHECKING: SA2

HP-IB (U424)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA2

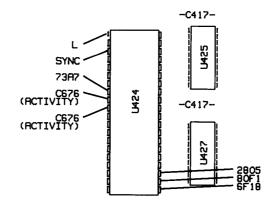
5. STOP/QUAL: SA3

6. CLOCK:

SA5

7. GROUND: SA4

8. POLARITY: CLOCK _ START _ STOP_/


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED CLOSED

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. "sync" indicates a node with no meaningful signature. Node is synchronous with SA clock. Check for activity only.
- 3. "L" indicates pin is low.
- 4. If signatures at pins 21, 22, and 23 are incorrect, see Failed Address Latch for additional troubleshooting information.

FAILED BACKPLANE BUFFER

CHECKING: SA2

BACKPLANE BUFFER (U422)

03488-66540 ERC: 2642

SET-UP

1. INSTALL RP409

2. HP-IB ADDRESS SET TO 09

3. POWER ON SRQ SET TO OFF

4. START/ST/SP:SA2

5. STOP/QUAL: SA3

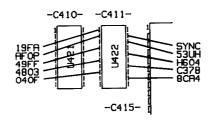
6. CLOCK:

SA₅

7. GROUND:

SA4

8. POLARITY: CLOCK __ START __ STOP__


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE	
SWITCH	POSITION
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN OPEN OPEN OPEN OPEN CLOSED CLOSED

+5 Vdc: C676

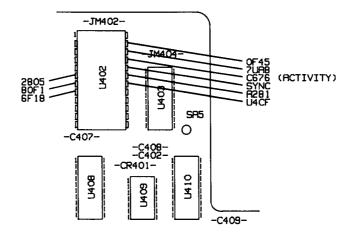
- 1. Power must be applied before grounding SA8.
- 2. "sync" indicates a node with no meaningful signature. Node is synchronous with SA clock. Check for activity only.
- 3. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED RAM

CHECKING: SA2

RAM (U402)

03488-66540 ERC: 2642


SET-UP

- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:
- SA5
- 7. GROUND:
- SA4
- 8. POLARITY: CLOCK __ START __ STOP __
- 9. APPLY POWER THEN GROUND SA8
- 10. SET SWITCHES SWP401-1 THRU 8

(see Table)

SWP401 TABLE		
SWITCH	POSITION	
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. RAM outputs are given in Step 13.
- 3. Pins 18, 20 and 21 are enable inputs.
- 4. "sync" indicates a node with no meaningful signature. Node is synchronous with SA clock. Check for activity only.
- 5. Troubleshoot using Figure 6-11 (Controller Schematic).

FAILED ADDRESS LATCH

CHECKING: SA2

ADDRESS LATCHES (402, U412)

03488-66540 ERC: 2642

SET-UP

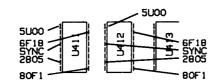
- 1. INSTALL RP409
- 2. HP-IB ADDRESS SET TO 09
- 3. POWER ON SRQ SET TO OFF
- 4. START/ST/SP:SA2
- 5. STOP/QUAL: SA3
- 6. CLOCK:

SA₅

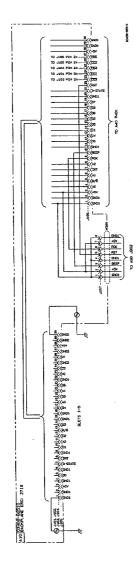
7. GROUND:

SA4

8. POLARITY: CLOCK __ START _ STOP __/


9. APPLY POWER THEN GROUND SA8

10. SET SWITCHES SWP401-1 THRU 8


(see Table)

SWP401 TABLE		
SWITCH	POSITION	
SWP401-1 SWP401-2 SWP401-3 SWP401-4 SWP401-5 SWP401-6 SWP401-7 SWP401-8	OPEN OPEN OPEN OPEN CLOSED CLOSED CLOSED CLOSED	

+5 Vdc: C676

- 1. Power must be applied before grounding SA8.
- 2. Check U411 first, signatures on U412 require correct signatures on U411.
- 3. Troubleshoot using Figure 6-11 (Controller Schematic).
- 4. "sync" indicates a node with no meaningful signature. Node is synchronous with SA clock. Check for activity only.

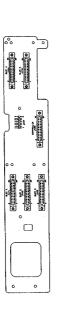


Figure 6-9 Backplane Schematic 6-51/6-52

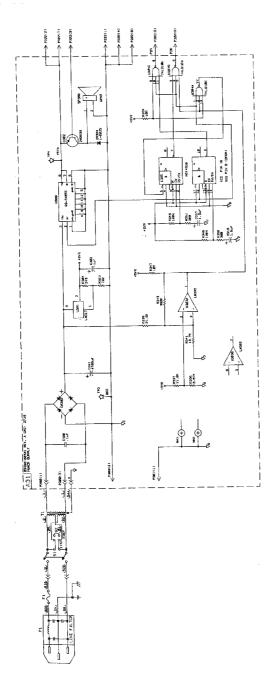
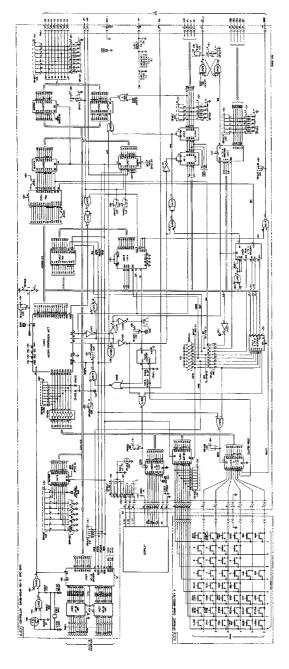



Figure 6-10 Power Supply Schematic 6-53/6-54

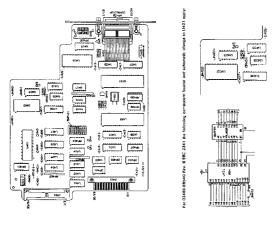


Figure 6-11 Controller Schematic 6-55/6-56

· ·

Chapter VII BACKDATING

CHAPTER VII

TABLE OF CONTENTS

	Pag	e
7-1	Introduction	1
7-2	Mechanical Changes7-	1
7-3	3488A Top Cover Change7-	1
7-4	3488A Switch Assembly Mounting	
	Change	1
7-5	Electrical Changes7-	1
7-6	03488-66540 Controller7-	1
7-7	44470A 10 Channel Relay Multiplexer7-	2
7-8	44471A 10 Channel General Purpose	
	Relay	2
7-9	44473A 4X4 Matrix Switch7-	2
7-10	44474A 16 Channel Digital	
	Input/Output	3
7-11	03488-66510 Backplane7-	3
7-12	03488-66530 Power Supply7-	3

CHAPTER VII BACKDATING

7-1 INTRODUCTION

This chapter contains information required to adapt this manual to instruments with serial numbers and engineering revision codes lower than the ones listed on the title page. The instrument serial number is used to identify changes to the mechanical aspects of the HP 3488A. The engineering revision code is used on each electrical assembly to identify changes to that assembly. A complete description of the engineering revision code is given in Section 6-6 of this manual.

7-2 MECHANICAL CHANGES

7-3 3488A Top Cover Change

Beginning with serial number 2240A1858 the top cover, bottom cover and fasteners were changed. The change occurred because the plating on the fasteners was found to flake off when the covers were attached, leaving metal particles inside the instrument. The new covers use a larger diameter, shorter screw fastener and a longer threaded insert in the top cover. To accommodate the longer threaded insert, the printed circuit board guides had to be modified slightly. If replacing the top cover or bottom cover on instruments with serial numbers 2240A1857 or below, order Enclosure Retrofit Kit, part number 03488-68701. This kit contains all the necessary hardware to retrofit the instrument covers. The original fasteners can be obtained by ordering HP part number 0515-0754.

7-4 3488A Switch Assembly Mounting Change

Serial number unknown. The line power switch assembly (MP33 in Figure 5-6) was mounted to the power supply bracket (MP35 in Figure 5-6) using a screw (MP34 in Figure 5-6) into a threaded insert. On later instruments, the threaded insert was replaced by a nut (MP53 in Figure 5-6). The change was incorporated to aid production assembly procedures.

7-5 ELECTRICAL CHANGES

7-6 03488-66540 Controller

Controller printed circuit boards with ERC codes 2338 used a socket to mount U401. This socket was later removed and the IC soldered directly into the board. The printed circuit board traces were also changed. The change is NOT retrofitable. If the IC socket should fail, a replacement socket can be obtained by ordering part number 1200-0469. The ERC was changed to 2341 and the printed circuit board revision was changed to revision B.

New ROM code was added and a different ROM pin-out was used on printed circuit boards with ERC of 2605. The new ROM code eliminates the possibility of HP-IB hangup under certain unique application/timing situations. The new ROM is not retrofitable. To use the new ROM on boards with ERC 2338 or 2341, order service kit 03488-68702 which contains the new memory device with installation instructions.

Figure 7-1 contains the signature changes corresponding to the 1818-3306 ROM. The SET-UP and NOTES for each SA test do not change. Those tests not listed here are valid in section VI for either the 1818-3306 ROM or the ERC 2605 ROM (1818-3830).

7-7 44470A 10-Channel Relay Multiplexer

HP 44470A printed circuit boards with ERC codes 2338 used a 1.8 Kohm resistor (part number 0683-1825) for R901, R902, R903, R912, R914, R915 and R916. This resistor was changed to a 2.7 Kohm resistor (part number 0683-2725). The resistor value was increased to decrease the base drive current of transistors Q901, Q903, Q904, Q905, Q906, Q907 and Q908 and so decrease the power dissipation.

If a failure is encountered in these resistors on boards with ERC 2338, it is recommended that all the resistors be changed to the new value. If this modification is performed, mark the letter "A" on the board, next to the ERC label, with permanent ink. The letter "A" will indicate that this modification has been performed. When this change was implemented on new boards, the engineering revision code was changed to 2340.

Prior to ERC 2601, a different connector was used. Form, fit and function of the previous connector is identical to that used on ERC 2601. If a connector needs replacing, replace with 5180-6636 regardless of ERC. Prior to ERC 2608, a different capacitor was used for C905 (5180-0254). Replace with part number listed in Section VI regardless of ERC.

7-8 44471A 10 Channel General Purpose Relay

HP 44471A printed circuit boards with ERC codes 2338 used a 1.8 Kohm resistor (part number 0683-1825) for R901, R902, R903, R912, R914, R915 and R916. This resistor was changed to a 2.7 Kohm resistor (part number 0683-2725). The resistor value was increased to decrease the base drive current of transistors Q901, Q903, Q904, Q905, Q906, Q907 and Q908 and so decrease the power dissipation.

If a failure is encountered in these resistors on boards with ERC 2338, it is recommended that all the resistors be changed to the new value. If this modification is performed, mark the letter "A" on the board, next to the ERC label, with permanent ink. The letter "A" will indicate that this modification has been performed.

When this change was implemented on new boards, the engineering revision code was changed to 2340.

7-9 44473A 4X4 Matrix Switch

HP 44473A printed circuit boards with ERC codes 2338 used a 1.8 Kohm resistor (part number 0683-1825) for R901, R902, R903, R912, R914, R915 and R916. This resistor was changed to a 2.7 Kohm resistor (part number 0683-2725). The resistor value was increased to decrease the base drive current of transistors Q901, Q903, Q904, Q905, Q906, Q907 and Q908 and so decrease the power dissipation.

If a failure is encountered in these resistors on boards with ERC 2338, it is recommended that all the resistors be changed to the new value. If this modification is performed, mark the letter "A" on the board, next to the ERC label, with permanent ink. The letter "A" will indicate that this modification has been performed.

When this change was implemented on new boards, the engineering revision code was changed to 2340.

7-10 44474A 16 Channel Digital Input/Output

HP 44474A printed circuit boards with ERC 2338 used part number 1855-0423 for FETs Q901 through Q916. An improved part was later used. If a failure is encountered with Q901 through Q916, it is recommended that the new part number be used as a replacement. The new part number is 1855-0564.

If all 16 of the FETs on the printed circuit board have been replaced by the new part number, mark the board, next to the ERC label, with the letter "B". The letter "B" will indicate that the modification has been performed.

When this change was implemented on new boards, the engineering revision code was changed to 2429.

Prior to ERC 2609, pins 1 of U903 and U904 (Output Enable) were grounded. This allowed these two IC's to be enabled in an unknown state for 250 milliseconds at power-up after which time the instrument initializes the card to a known state. During this momentary enable, certain I/O lines were pulled low. The ERC 2609 board connects U903 and U904 pin 1 to U902 pin 1 which is controlled by line "3-state" which prevents enable at power-up and assures a tri-state condition on the I/O lines.

7.11 03488-66510 Backplane

Prior to ERC 2551, different card edge connectors were used. Form, fit and function of the previous connector is identical to that used on ERC 2551. If a connector needs replacing, replace with 5180-8211 regardless of ERC.

7.12 03488-66530 Power Supply

Prior to serial numbers prefixed 2719A, a different power supply board was used. The old power supply, 03488-66530, used discrete components for regulation and protection. The newer power supply, 03488-66531, has a self-contained regulator which replaces much of the old circuitry. The new power supply is compatible with all older instruments.

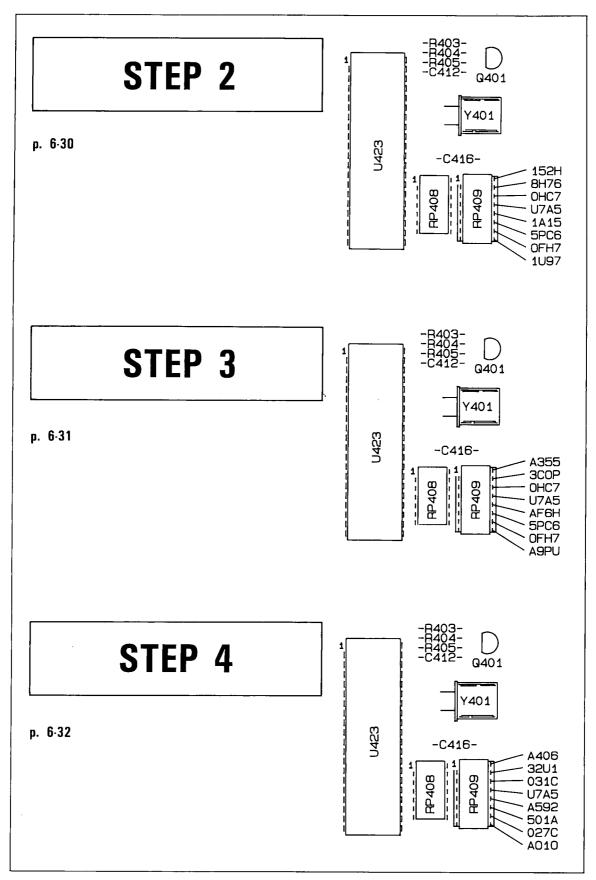


Figure 7-1. Signature Changes for 1818-3306 ROM (ERC 2338 and 2341)

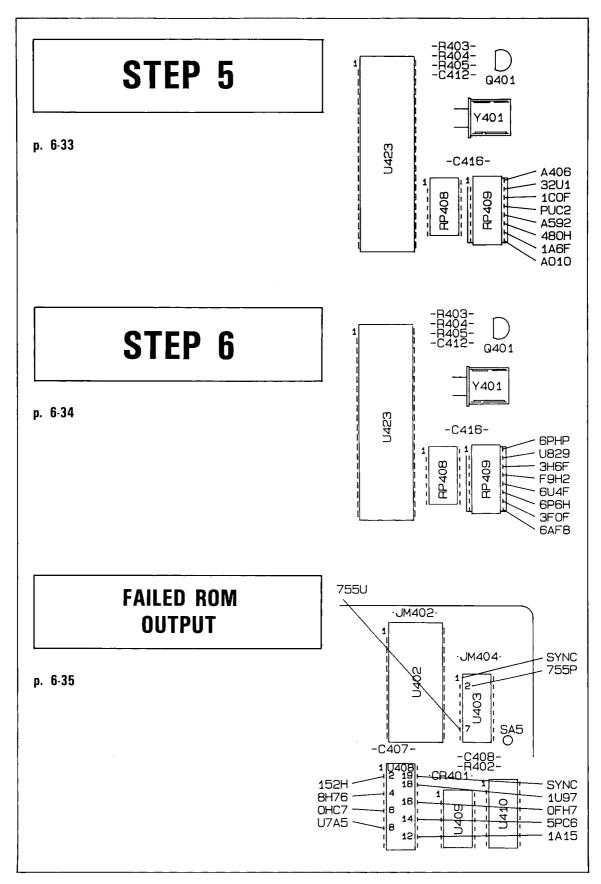


Figure 7-1. Signature Changes for 1818-3306 ROM (ERC 2338 and 2341) (Cont'd)

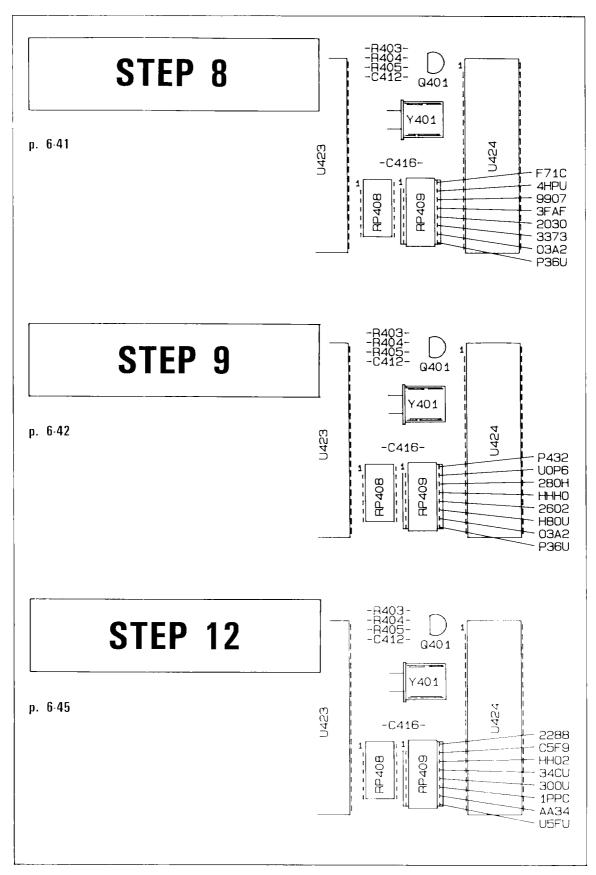


Figure 7-1. Signature Changes for 1818-3306 ROM (ERC 2338 and 2341) (Cont'd)

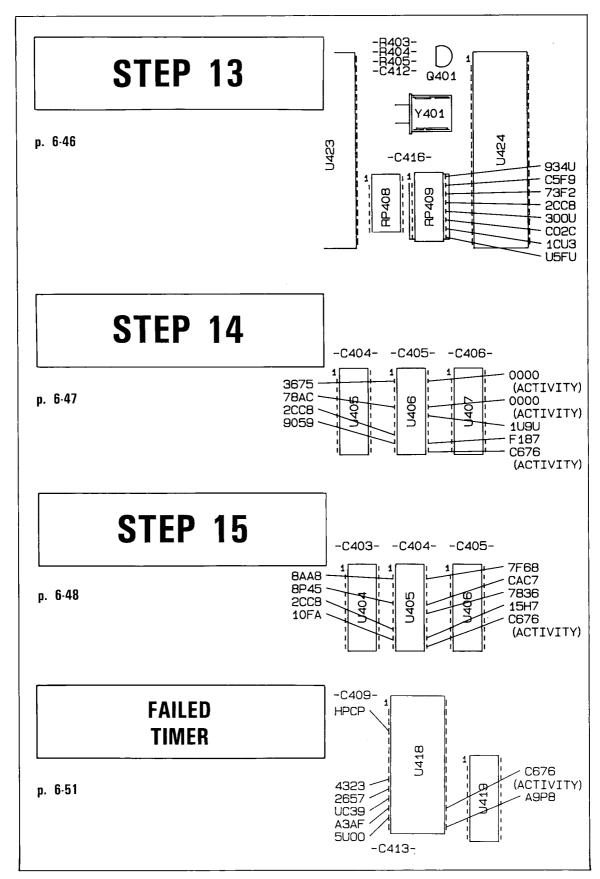
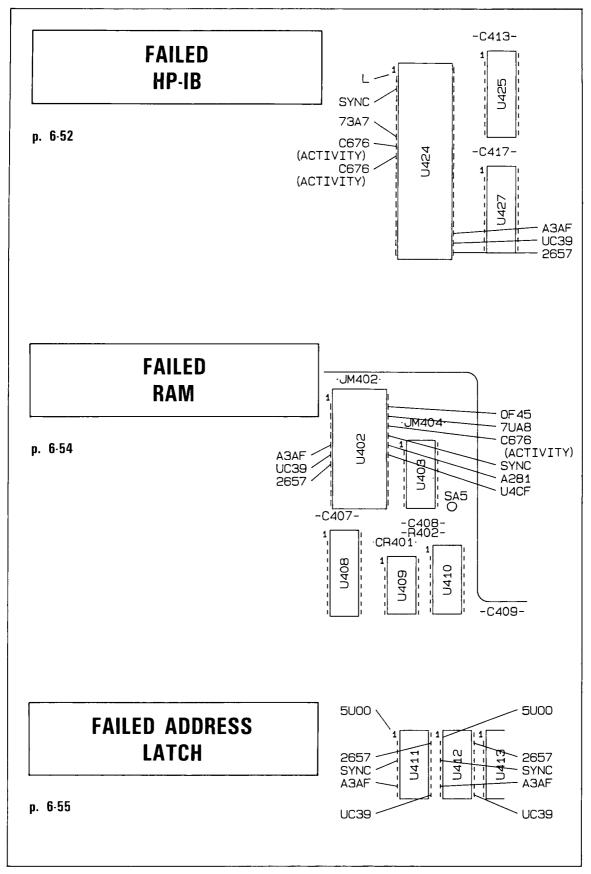
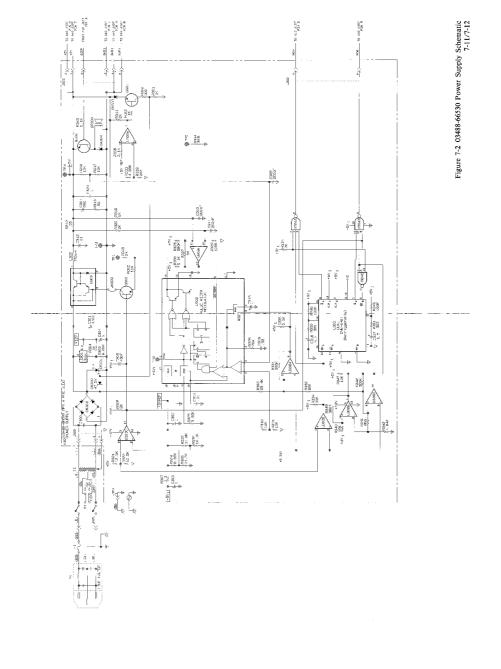
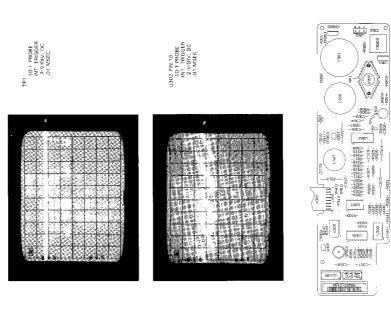


Figure 7-1. Signature Changes for 1818-3306 ROM (ERC 2338 and 2341) (Cont'd)




Figure 7-1. Signature Changes for 1818-3306 ROM (ERC 2338 and 2341) (Cont'd)


Table 7-1 Replaceable Parts for 03488-66530 Power Supply

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A30C300 A30C301 A30C303 A30C304 A30C305	0160-3622 0180-3393 0180-0291 0180-0291 0180-0291	8 2 3 3 3	1 1 4	CAPACITOR-FXD .1UF +80-20% 100VDC CER CAPACITOR-FXD 4700UF 50V CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA	26654 28480 56289 56289 56289	2130Y5U100R104Z 0180-3393 150D105X9035A2 150D105X9035A2 150D105X9035A2
A30C306 A30C307 A30C308 A30C309 A30C310	0160-4805 0180-3399 0160-5349 0160-4571 0160-5349	1 8 0 8	1 1 3 1	CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 560UF 40V CAPACITOR-FXD 200PF +-5% 100VDC CER CAPACITOR-FXD .1UF +80-20% 30VDC CER CAPACITOR-FXD 200PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4805 0180-3399 0160-5349 0160-4571 0160-4379
A30C311 A30C312 A30C313 A30C314 A30C315	0160-5349 0160-3847 0180-0291 0160-0207 0160-0889	0 9 3 9 3	13 1 1	CAPACITOR-FXD 200PF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .01UF +-5% 200VDC POLYE CAPACITOR-FXD .33UF +-10% 80VDC POLYE	28480 28480 56289 28480 28480	0160-5349 0160-3847 1500105X9035A2 0160-0207 0160-0889
A30C316 A30C317	0180-1745 0180-1745	4	s	CAPACITOR-FXD 1.5UF+-10% 20VDC TA CAPACITOR-FXD 1.5UF+-10% 20VDC TA	56289 56289	150D155X9020A2 150D155X9020A2
A30CR300 A30CR301 A30CR302 A30CR303 A38CR304	1902-0176 1884-0266 1906-0079 1901-0025 1901-0025	65602	1 1 1 2	DIODE-ZNR 47V 5% PD=1W IR=5UA THYRISTOR-BCR 2N64UO TO-220AB VRRM=50 DIODE-FW BRDG 100V 10A DIODE-GEN PRP 100V 200MA DD-7 DIODE-GEN PRP 100V 200MA DD-7	28480 3L585 1B546 28480 28480	1902-0176 2N6400 VJ148X 1901-0025 1901-0025
A30J300 A30J301	1251-4246 1251-0600	8	1 1	CONNECTOR 3-PIN M POST TYPE CONNECTOR-SGL CONT PIN 1.14-MM-BBC-SZ SQ	28480 28480	1251-4246 1251-0600
A30JM300	8159-0005	0	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	8159-0005
A30L300 A30KP1	03488-87101 1205-0531	9	1	I-F 750UH HEAT SINK	28480 28480	03488-87101 1205-0531
A309300 A309301 A309302	1854-0637 1853-0036 1853-0016	1 2 8	1 1 1	TRANSISTOR NPN 2N2219A SI TO-5 PD=800MW TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI TO-92 PD=300MW	01295 28480 28480	2N2219A 1853-0036 1853-0016
A30R300 A30R301 A30R302 A30R303 A30R304	0698-4490 0757-0280 0683-3015 0757-0441 0757-0280	9 3 1 8 3	1 2 3 1	RESISTOR 29.4K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 300 5% .25W FC TC=-400/+600 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-110	24546 24546 01121 24546 24546	C4-1/8-T0-2942-F C4-1/8-T0-1001-F CB3015 C4-1/8-T0-8251-F C4-1/8-T8-1001-F
A30R305 A30R306 A30R307 A30R308 A30R310	0683-2025 0698-4414 0683-0335 0683-2025 0683-1025	1 7 2 1 9	5 1 1	RESISTOR 2K 5% .25W FC TC=-400/+700 RESISTOR 158 1% .125W F TC=0+-100 RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 2K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 24546 01121 01121 01121	CB2025 C4-1/8-T0-158R-F CB33G5 CB2025 CB1025
A30R311 A30R312 A30R313 A30R314 A30R315	0683-2025 0699-1074 0699-1074 0699-1137 0698-4157	1 1 7 5	2 1 4	RESISTOR 2K 5% .25W FC TC=-400/+700 RESISTOR .05 3% 3W F TC=0+-337 RESISTOR .05 3% 3W F TC=0+-337 RESISTOR 39 5% 2W F TC=0+-200 RESISTOR 10K .1% .125W F TC=0+-50	01121 28490 28480 28480 28480	CB2025 0699-1074 0699-1074 0699-1137 0698-4157
A30R316 A30R317 A30R318 A30R319 A30R320	0698-4157 0698-4157 0698-4157 0757-0283 0757-0283	55566	2	RESISTOR 10K .1% .125W F TC=0+-50 RESISTOR 10K .1% .125W F TC=0+-50 RESISTOR 10K .1% .125W F TC=0+-50 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	28480 28480 28480 24546 24546	0698-4157 0698-4157 0698-4157 C4-1/8-T0-2001-F C4-1/8-T0-2001-F
A30R321 A30R322 A30R323 A30R324 A30R325	0698-6758 0698-6758 0698-4121 0698-3498 0757-0435	6 6 3 5 0	2 1 1 1	RESISTOR 12.5K .5% .125W F TC=0+-50 RESISTOR 12.5K .5% .125W F TC=0+-50 RESISTOR 11.3K 1% .125W F TC=0+-100 RESISTOR 8.66K 1% .125W F TC=0+-100 RESISTOR 3.92K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	NC4-1/8-T2-1232-D NC4-1/8-T2-1252-D C4-1/8-T0-1132-F C4-1/8-T0-86R-F C4-1/8-T0-3921-F
A30R326 A30R327 A30R328 A30R329 A30R330	0757-0449 0683-1055 0698-4532 0757-0465 0683-5125	6 5 0 6 8	2 1 1 2 4	RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 280K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 5.1K 5% .25W FC TC=-400/+700	24546 01121 24546 24546 01121	C4-1/8-T0-2002-F CB1055 C4-1/8-T0-2803-F C4-1/8-T0-1003-F CB5125
nsukssu	0000-3123		4	REGISTOR 3.1K 3A .EJW PC 1U=-400/+700	V1121	CBG12G

Table 7-1 Replaceable Parts for 03488-66530 Power Supply (Cont'd)

Reference Designation	HP Part CD Qty			Description	Mfr Code	Mfr Part Number
4308 331 4508 332 4308 333 4308 334 4308 335	0683-3645 0757-0422 0698-3279 0683-1035 0683-5125	3 5 0 1 B	3 1 1 3	RESISTOR 360K 5% .25W FC TC=-8007+900 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-4007+700 RESISTOR 5.1K 5% .25W FC TC=-4007+700	01121 24546 24546 01121 01121	CB3645 C4-178-T0-909R-F C4-178-18-4991-F CB1035 CB5125
A30R336 A30R337 A30R338 A30R339 A30R340	0698-6429 0698-8163 0683-5125 0757-0449 0683-1035	8 0 8 6	1	RESISTOR 10.1K .5% .125W F TC=0+-100 RESISTOR 11.8K .25% .125W F TC=0+-50 RESISTOR 5.1K 5% .25W FC TC=-400/+700 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700	28480 19701 01121 24546 01121	0698-6429 MF4C1/9-T2-1182-C C85125 C4-1/8-T0-2002-F CB1035
A30R341 A30R342 A30R343 A30R344 A30R345	0698-4125 0698-3155 0683-5125 0683-2825 0757-0454	7 1 B 1 3	1	RESISTOR 953 1% ,125W F TC=0+-100 RESISTOR 4.64K 1% ,125W F TC=0+-100 RESISTOR 5.1K 5% ,25W FC TC=-400/+700 RESISTOR 2K 5% ,25W FC TC=-400/+700 RESISTOR 33.2K 1% ,125W F TC=0+-100	24546 24546 01121 01121 24546	C4-1/8-10-953R-F C4-1/8-10-4641-F C05125 CR2025 C4-1/8-10-3322-F
A30R346 A30R347 A30R348 A30R349 A30R350	0757-0465 0683-1035 0683-3645 0683-3645 0683-3015	6 1 3 3		RESISTOR 100K 1% ,125W F TC=0+-100 RESISTOR 10K 5% ,25W FC TC=-400/+700 RESISTOR 360K 5% ,25W FC TC=-800/+900 RESISTOR 360K 5% ,25W FC TC=-800/+900 RESISTOR 300 5% ,25W FC TC=-400/+600	24546 01121 01121 01121 01121	C4 1/8-T0-1003-F CB1035 CM3645 CB3645 CB3015
A30R351	06833015	1		RESISTOR 300 5% .25W FC TC=-400/+600	01121	CB3015
00E920CA	0960-0561	4	1	AUDIO TRANSDUCER 1~3VDC; B5DB AT 1.5V	28480	0960~0561
A30U300 A30U301 A30U302 A30U303 A30U304	1813-0083 1826-0393 1826-1040 1826-0138 1820-1202	5 7 3 8 7	1 1 1 2 2	IC 10-66 IC V RGLTR TO-220 IC V RGLTR-SWG 4.85/5.15V 18-DIP-C PKG IC COMPARATOR CP QUAD 14-DIP-P PKG IC GATE TTL LS NAND TPL 3-INP	12967 27014 28480 01295 01295	PIC601 LM317T 1926-1040 LM339N SN74LS10N
A30U305 A30U306	1820-1932 1826-0138	0 8	1	IC MV CMOS MONOSTBL RETRIG/RESET DUAL IC COMPARATOR GP QUAD 14-DIP-P PKG	04713 01295	MC145388CP LM339N
A30W300	03488~61601 03488~01201	5	1	CBL-ASSY PWRSPLY POWER SUPPLY BRACKET	28480	0348861601

Chapter VIII 44470A 10 CHANNEL RELAY MULTIPLEXER

CHAPTER VIII

TABLE OF CONTENTS

		Page
8-1	Introduction	
8-2	Plug-In Card Wiring	
8-3	Plug-In Card Cleaning	
8-4	Test Fixture	
8-5	Performance Tests	
8-7	44470A DC Isolation Tests	
8-9	44470A Thermal Offset Test	
8-11	Replaceable Parts	
8-12	44470A Theory Of Operation	. 8-12
8-13	Input Buffer And Latch	. 8-13
8-14	Relay Drive And Sense Operation	
8-15	Card-Type/Sense Buffer	
8-16	Address Decoder	
8-17	44470A Troubleshooting	
8-18	Introduction	
8-19	ERR 8: Logic Slot X	8-18
8-21	Initial Check	
8-22	Buffer, Driver, And Relay Signature	
·	Analysis	. 8-20
8-23	Sense Circuit Troubleshooting	.8-21
8-24	Sense Circuitry Signature Analysis	
	LIST OF TABLES	
T - 1-1		D
Table		Page
8-1	Replaceable Parts	8-14
8-2	Buffer, Driver, And Relay	0.22
0.2	Signatures (Test 2)	
	Sense Circuit Signature	
8-3b	Components Used For Signatures	. 8-23
	LIST OF ILLUSTRATIONS	
8-1	44470A Simplified Schematic	Q 1
8-2	Plug-In Card Wiring	
8-3	44470 Test Fixture	
8-4	DC Isolation Test Set-Up	
8-5	Channel To Common DC Isolation Test	0-0
8-6	Common High To Low DC Isolation	0-9
0-0	Test	. 8-10
8-7	Common To Chassis DC Isolation	8-11
8-8	44470A Disassembly	
8-9	One Relay Drive and Sense Circuit	8-16
	One Relay Drive and Sense Circuit Control Line Timing (Read)	
8-10	Control Line Timing (Read)	8-17
		8-17 8-18

CHAPTER VIII 44470A 10 CHANNEL RELAY MULTIPLEXER

8-1 INTRODUCTION

This chapter contains installation information, performance testing information, troubleshooting procedures, and replaceable parts lists for the 44470A 10 Channel Multiplexer.

The 44470A 10 Channel Multiplexer contains a 10 channel array of double-pole single-throw (DPST) relays. Each channel has a low line and a high line which are switched in unison. A simplified schematic of the 44470A relay circuitry is shown in Figure 8-1.

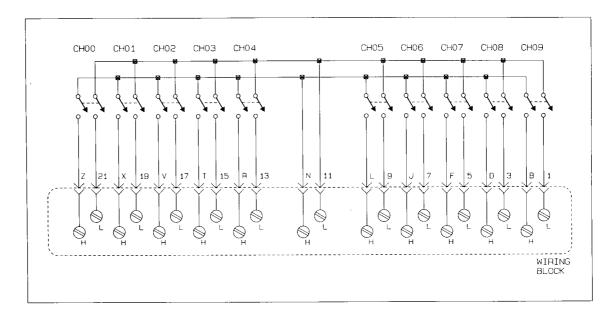


Figure 8-1 44470A Simplified Schematic

NOTE

The Performance Test procedures in this chapter are involved and time consuming. Since the most likely parameter to change with time is the series resistance of a channel, and since the series resistance is tested in the Operation Verification procedures (Chapter 4), it is not recommended that the Performance Tests be conducted unless one of the tested specifications is in question.

8-2 PLUG-IN CARD WIRING

Figure 8-2 shows the proper wiring procedures for the 44470A.

WARNING

Hazardous voltages may exist on the wiring and connectors of the 3488A's plug-in cards. Only Service Trained Personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and/or the plug-in cards.

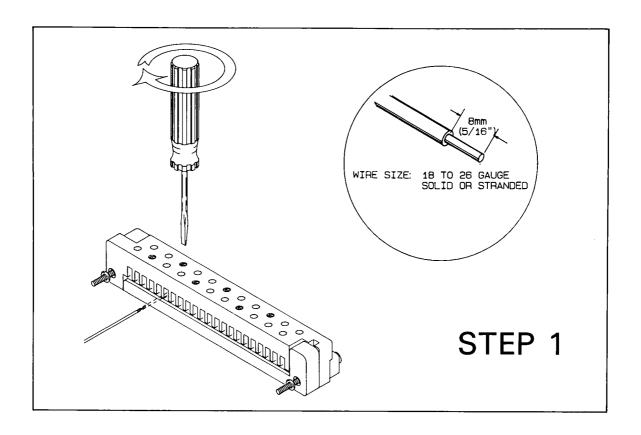
8-3 PLUG-IN CARD CLEANING

Printed circuit board contamination can affect the dc isolation and the high frequency performance of the plug-in cards. This contamination can come from dust accumulation, fingerprints, condensation, and so on. The plug-in card printed circuit boards are to be cleaned as follows:

Use anti-static pc board handling techniques during the following procedure.

- 1. Remove the shields from the plug-in card.
- 2. Use a stiff bristled camel hair brush (do not use a wire brush) soaked in isopropyl alcohol to wash the pc board.

DO NOT immerse the printed circuit board in any type of fluid.


- 3. Use the stiff bristled brush soaked in deionized or distilled water, to remove any residue left by the alcohol.
- 4. Allow the printed circuit board to dry thoroughly.
- 5. Replace the shields.

WARNING

Hazardous voltages may exist on the wiring and connectors of the 44470A plug-in card (see Caution below). Only service trained personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and/or its plug-in cards.

The 44470A's maximum terminal-to-terminal or terminal-to-chassis voltage limits are 250Vdc or 250 Vac rms (350 Vac peak). The maximum current limits are 2Adc or 2Aac rms (per channel or card). The maximum power limits are 60Wdc or 500VAac (per channel or card). Damage to the 44470A and possibly the 3488A will occur if any of the above limits are exceeded.

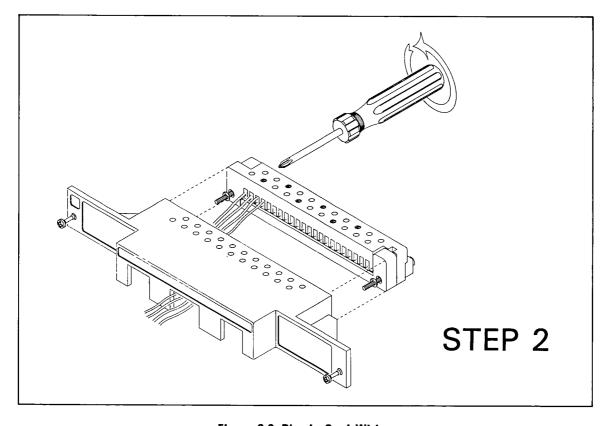


Figure 8-2 Plug-In Card Wiring

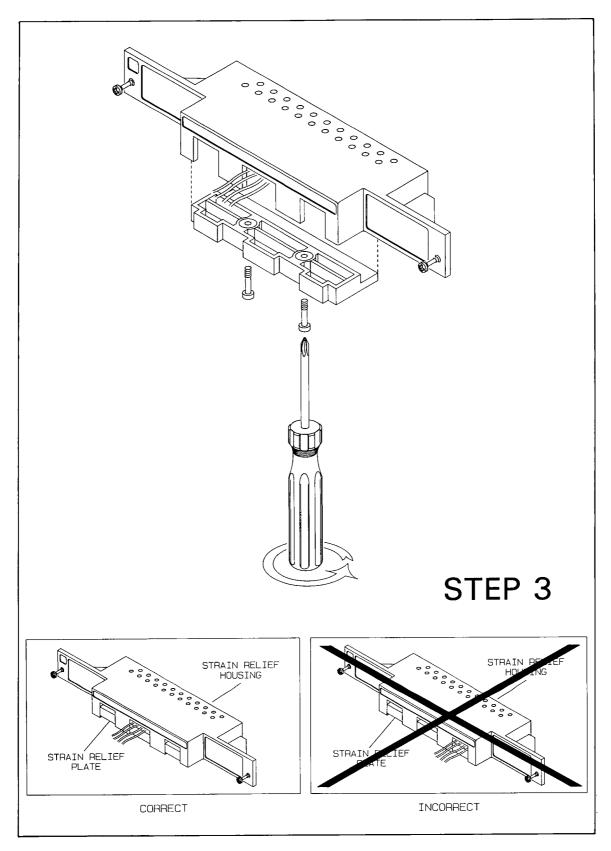
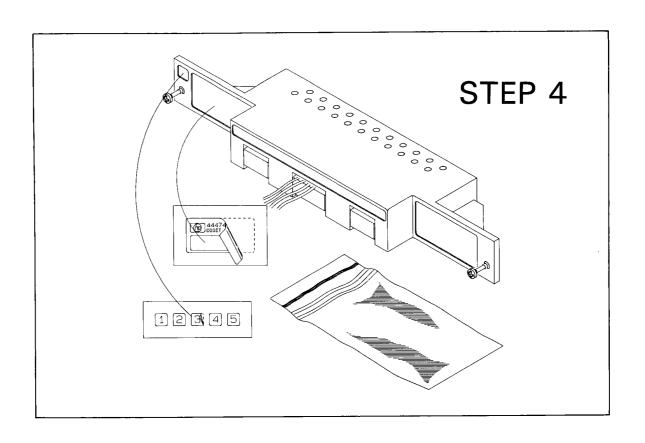



Figure 8-2. Plug-In Card Wiring (Cont'd)

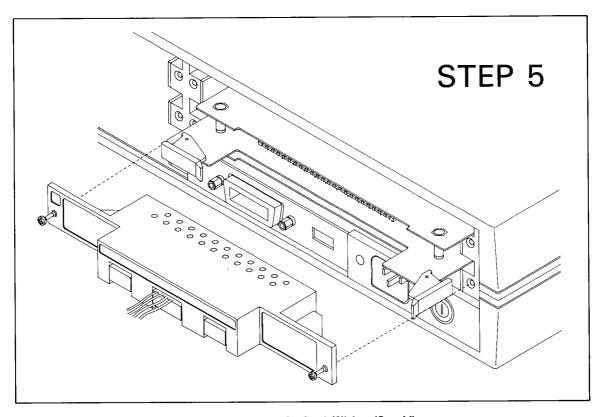


Figure 8-2. Plug-In Card Wiring (Cont'd)

8-4 TEST FIXTURE

A test fixture is required in order to perform the Operation Verification Tests for the 44470A (Chapter 4 of this manual). This fixture simplifies testing by eliminating the need to repeatedly connect and disconnect test leads and by acting as an interface between the 44470A and an ohmmeter.

The test fixture can be either of the following two types:

- a. A test fixture is available from Hewlett-Packard (HP part number 03488-66501). The advantages of this fixture are (1) it requires no assembly and (2) it can be used to test the 44470A, the 44471A, the 44473A and the 44474A plug-in cards without modification.
- b. A test fixture can be constructed by configuring an HP 44480A removable wiring block as shown in Figure 8-3. This particular test fixture can only be used to test the 44470A.

Either type of test fixture contains (1) a short circuit between all of the low lines, (2) a short circuit between all of the high lines, and (3) a short circuit between the two common lines. With the test fixture installed, and an ohmmeter connected between the shorted common lines and either the shorted low lines or the shorted high lines, the card is tested by successively closing each relay while checking for an indication of the closure on the ohmmeter.

8-5 PERFORMANCE TESTS

The following Performance Tests check the 44470A's dc isolation and thermal offset specifications. The results of these tests, when coupled with the results of the 44470A Operation Verification Test (Chapter 4), will verify whether or not the 44470A is operating within its critical specifications. Since the 44470A Operation Verification Test assesses the operability of the 44470A, it is important that it be performed prior to performing the Performance Tests.

WARNING

If the 44470A is currently installed into a system, it must be disconnected from the system in order to execute the Performance Tests. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected. The user must take the necessary precautions to prevent the above from happening before disconnecting the 44470A.

8-6 Required Test Equipment

DC Power Supply — HP 6216B or equivalent. The power supply must be able to deliver a stable +20Vdc at low current levels.

10 megohm resistor.

Digital Multimeter — HP 3478A or equivalent. The multimeter must have the resolution and accuracy to measure a $1\mu V$ differential dc voltage.

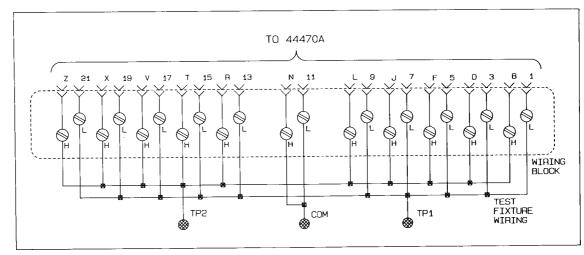


Figure 8-3 44470 Test Fixture

8-7 44470A DC Isolation Tests

The following dc isolation tests require a dc power supply, a resistor of known value, and a dc voltmeter. The first phase of the tests involves precisely setting the dc power supply's output voltage and connecting the resistor and the dc voltmeter in series with the power supply. In this configuration, the resistor and the internal resistance of the dc voltmeter form a voltage divider. The voltage drop across the dc voltmeter is measured and, with the value of the resistor and the power supply voltage being known, the internal resistance of the dc voltmeter is calculated.

NOTE

The best test results will be obtained when the value of the known resistor is equal to the internal resistance of the dc voltmeter.

The second phase of the tests consists of (1) placing a channel of the 44470A in parallel with the dc voltmeter, (2) measuring the voltage drop across the dc voltmeter/channel combination, and (3) calculating the channel's dc isolation.

- 1. SET-UP SEQUENCE: Set the digital multimeter to measure dc voltage. Connect the multimeter to the dc power supply. Set the dc power supply to deliver $\pm .01$ Vdc as measured on the multimeter. This voltage will be referred to as V1 in the following steps.
- 2. Use the multimeter to measure the exact resistance of the 10 megohm resistor. This resistance will be referred to as R1.
- 3. Connect the test equipment as shown in Figure 8-4.

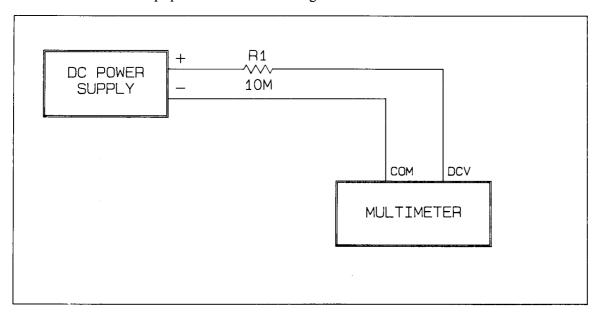


Figure 8-4 DC Isolation Test Set-Up

- 4. Set the multimeter to the 300Vdc range. Record the exact dc voltage reading on the multimeter. This voltage will be referred to as V2 in the following steps.
- 5. Calculate the internal resistance of the multimeter (Rm) using the following equation:

$$Rm = R1 \bullet V2/(V1 - V2)$$

NOTE

In most cases, the internal resistance of the multimeter depends on its range setting. For this reason, do not change the multimeter's range setting in the following steps.

- 6. OPEN CHANNEL TO COMMON DC ISOLATION TEST: use the 3488A front panel keys to establish the card monitor mode and to open all channels as follows:
 - a. Press the LOCAL key.
- b. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44470A.
 - c. Press the EXECUTE key.

- d. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44470A.
 - e. Press the EXECUTE key.
- 7. Connect the common low line and the low line of the channel under test (channel 00 to start) into the test circuit as shown in Figure 8-5. Record the multimeter's dc voltage reading for this channel. This reading will be referred to as V3.

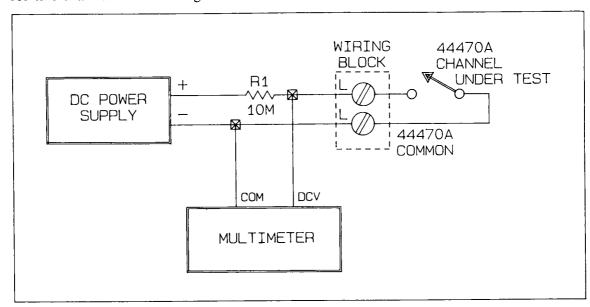


Figure 8-5 Channel To Common DC Isolation Test

8. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V3 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V3) - R1 \cdot V3}$$

The open channel to common dc isolation should be greater than 5 gigohms for each channel.

- 9. Repeat steps 7 and 8 for the low lines of channels 01 through 09.
- 10. Repeat steps 7 and 8 using the common high line and the high lines of channels 00 through 09.
- 11. COMMON HIGH TO LOW TEST: Reset the 44470A and establish a scan list as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the card.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X09 (where X is the slot occupied by the 44470A and 00 through 09 are the channels to be scanned).
 - d. Press the EXECUTE key.

12. Connect the equipment to the common high and common low lines as shown in Figure 8-6.

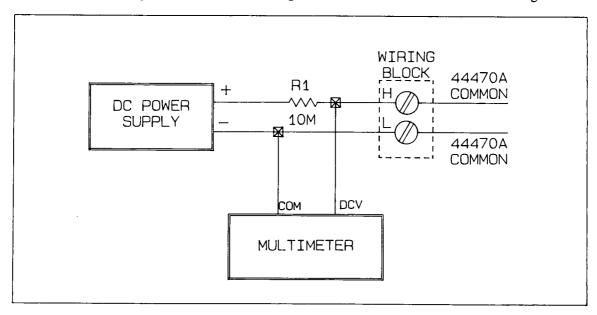


Figure 8-6 Common High To Low DC Isolation Test

- 13. Press the STEP key and record the multimeter reading for the channel under test (channel 00 to start). This voltage will be referred to as V4.
- 14. Calculate the dc isolation resistance (Rc) using the following equation:

$$Rc = \frac{V4 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V4) - R1 \bullet V4}$$

With any one channel closed, the common high to low dc isolation resistance should be ≥ 1 gigohm.

- 15. Repeat steps 13 and 14 for the remaining channels (01 through 09).
- 16. COMMON TO CHASSIS DC ISOLATION TEST: Connect the equipment to the 3488A back panel ground connector (chassis ground) and to the common low line connector as shown in Figure 8-7.
- 17. Reset the 44470A and establish a scan list as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the card.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X09 (where X is the slot occupied by the 44470A and 00 through 09 are the channels to be scanned).
 - d. Press the EXECUTE key.
- 18. Press the STEP key and record the multimeter reading for the channel under test (chan-

nel 00 to start). This voltage will be referred to as V5.

19. Calculate the dc isolation resistances (Rc) using the following equation:

$$Rc = \frac{V5 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V5) - R1 \bullet V3}$$

With any one channel closed, the common to chassis dc isolation resistance should be ≥ 1 gigohm.

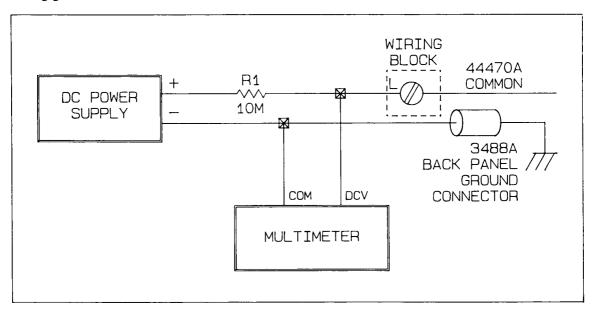


Figure 8-7 Common To Chassis DC Isolation

- 20. Repeat steps 18 and 19 for each of the remaining channels.
- 21. Remove the test lead from the common low line connector and connect it to the common high line connector. Repeat steps 18 and 19 for the high lines of of channels 00 through 09.

8-8 Corrective Action

An open channel to common isolation failure (Step 8) is most likely caused by a failing relay or a damaged or dirty 44470A printed circuit board. Board cleaning is described in Section 8-3. Section 8-17 describes troubleshooting procedures to isolate a damaged relay.

A common high to low isolation failure (Step 14) is most likely caused by a dirty 44470A printed circuit board. Board cleaning is described in Section 8-3.

A common to chassis isolation failure (Step 19) can be caused by electrical leakage from a relay contact through its drive coil to ground, or by a damaged or dirty printed circuit board. Board cleaning is described in Section 8-3. Section 8-17 describes troubleshooting procedures to isolate a damaged relay.

8-9 44470A Thermal Offset Test

This is a test of the thermally generated dc voltage present on the 44470A. This test is very

sensitive to ambient temperature changes and thermoelectricity generated at the junction of two dissimilar metals. For these reasons, it is important that this test be performed in an environment where the temperature is stable and that the number of test lead connections are kept to a minimum.

- 1. Set the multimeter to its lowest dc voltage range. Connect the two multimeter test leads together and record the reference offset voltage. This voltage will be referred to as V1 in the following steps.
- 2. Set up a scan list and the card monitor mode as follows:
- a. Press the SCAN LIST key followed by X00-X09 (where X is the slot occupied by the 44470A and 00 through 09 are the channels to be scanned).
 - b. Press the EXECUTE key.
- c. Press the CARD MONITOR key followed by X (where X is the slot occupied by the 44470A).
 - d. Press the EXECUTE key.
- 3. Connect the multimeter's common test lead to the 44470A's common L terminal.
- 4. Press the STEP key. Measure the dc voltage on the L terminal of the channel shown in the display (channel 00 to start). This voltage will be referred to as V2. The difference between V1 and V2 must be less than 3μ V for each channel.
- 5. Repeat step 4 for channels 01 through 09.
- 6. Connect the multimeter's common test lead to the 44470A's common H terminal.
- 7. Repeat step 4 for the H terminals of channels 00 through 09.

8-10 Corrective Action

The most likely cause of a thermal offset failure is the relay or a connector. Section 8-17 describes troubleshooting procedures to isolate a failing relay.

8-11 REPLACEABLE PARTS

Table 8-1 lists the mechanical and electrical replaceable parts available for the 44470A. The mechanical parts are keyed to Figure 8-8. This figure also provides assembly and disassembly information. The electrical parts are keyed to the schematic and component locator in Figure 8-12. Table 5-2, in Chapter 5, lists manufacturers code numbers as they apply to the parts lists in Table 8-1.

8-12 44470A THEORY OF OPERATION

The 44470A Multiplexer Card consists of an input buffer and latch, relay drive and sense circuits, an address decoder, and a card-type/sense buffer. Refer to the 44470A schematic in the following discussions (Figure 8-12).

8-13 Input Buffer And Latch

The input buffer (U902 in Figure 8-12) provides isolation between the 44470A and the main-frame's data bus. An input buffer is present on each type of option card and prevents excessive loading of the data bus by the option cards.

The input latch (U903 and U905 in Figure 8-12) holds the output of the input buffer for application to the relay drive and sense circuitry.

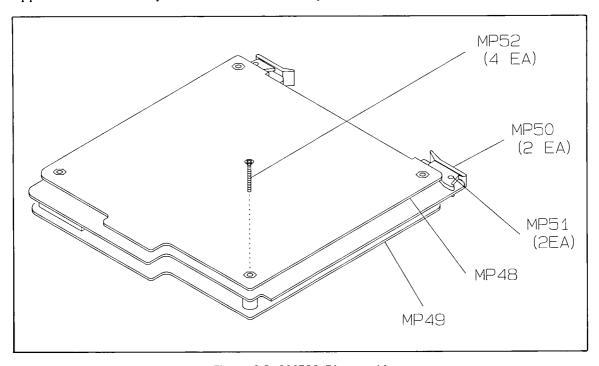


Figure 8-8 44470A Disassembly

8-14 Relay Drive And Sense Operation

A simplified schematic diagram of one relay drive and sense circuit is shown in Figure 8-9. When instructions are received over the data bus to set a relay (close a channel), a logic high level is applied to the base of Q2 and the input of U2 causing their outputs to go low. A logic low level is applied to the base of Q1 causing its output to go high. CR2 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to close the relay contacts. Once closed, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contact in the closed state.

When instructions are received over the data bus to reset a relay (open a channel), a logic low level is applied to the base of Q2 and the input of U2 causing their outputs to go high. A logic high level is applied to the input of U1 causing its output to go low. CR1 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to open the relay contacts. Once opened, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contacts in the opened state.

Table 8-1 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	44470-66501	0	1	10-CHANNEL MULTIPLEXER ERC: 2608	28480	44470-66501
A1C901 A1C902 A1C903 A1C904 A1C905	0160-3847 0160-3847 0160-3847 0160-3847 0160-4844	9 9 9 2	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 30VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-4844
A1CR901 A1CR902 A1CR903 A1CR904 A1CR906	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3 3 3	13	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR907 A1CR908 A1CR909 A1CR910 A1CR911	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	33333		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR912 A1CR945 A1CR946	1901-0050 1901-0050 1901-0050	3 3 3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480	1901-0050 1901-0050 1901-0050
A1DP901 A1DP902	1906-0229 1906-0229	8	2	DIODE-ARRAY 50V 400MA DIODE-ARRAY 50V 400MA	01295 01295	TID133 TID133
A1 J901	5180-6636	1	1	CONN-2X11 RT ANG	28480	5180-6636
A1JN901 A1JN903 A1JM904 A1JN906 A1JM907	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057	ភភភភភភ	20	RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 28480 28480 28480	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057 7175-0057
A1JM909 A1JM910 A1JM912 A1JM913 A1JM915	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057	ភ្ភេសស		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 28480 28480 28480	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057 7175-0057
A1JH916 A1JH918 A1JH919 A1JH921 A1JH922	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057	55555		RESISTOR-ZERG OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 28480 28480 28480	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057 7175-0057
A1JM924 A1JM925 A1JM927 A1JM928 A1JM930	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057	5555 5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 28480 28480 28480	7175-0057 7175-0057 7175-0057 7175-0057 7175-0057 7175-0057
A1K901 A1K902 A1K903 A1K904 A1K905	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337	7 7 7 7 7	10	RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V	28480 28480 28480 28480 28480	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337
A1K906 A1K907 A1K908 A1K909 A1K910	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337	77777		RELAY-SAEB-L2-5U RELAY-SAEB-L2-5U RELAY-SAEB-L2-5U RELAY-SAEB-L2-5U RELAY-SAEB-L2-5U	28480 28480 28480 28480 28480	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337
A1P901	5180-6697	9	1	CONN-RT ANG 2X15	28480	1251-8645
A1 9701 A1 9703 A1 9704 A1 9705 A1 9706	1853-0551 1853-0551 1853-0551 1853-0551 1853-0551	66666	7	XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237	28480 28480 28480 28480 28480	1853-0551 1853-0551 1853-0551 1853-0551 1853-0551
A1Q907 A1Q908	1853-0551 1853-0551	6		XSTR-TN4030-237 XSTR-TN4030-237	28480 28480	1853-0551 1853-0551
A1R901 A1R902 A1R903 A1R904 A1R905	0683-2725 0683-2725 0683-2725 0683-1035 0683-1035	8 8 1 1	7 8	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB1035 CB1035
A1R906 A1R907 A1R908 A1R909 A1R910	0683-1035 0683-1035 0683-1035 0683-1035 0683-1035	1 1 1 1 1		RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121 01121	CB1035 CB1035 CB1035 CB1035 CB1035

Table 8-1 Replaceable Parts (Cont'd)

Table 8-1 Replaceable Parts (Cont'd)										
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
A1R912 A1R914 A1R915 A1R916 A1R917	0683-2725 0683-2725 0683-2725 0683-2725 0683-1035	9 9 8 1		RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB2725 CB2725 CB1035				
A1R918 A1R919 A1R920	0683-4705 0683-4705 0683-4705	8 8	3	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 01121	CB4705 CB4705 CB4705				
A1U901 A1U902 A1U903 A1U904 A1U905	1820-2537 1820-2537 1820-2216 1858-0047 1820-2216	3 3 5 5 5	2 2 2	IC DRVR CMOS LINE DRVR OCTL IC DRVR CMOS LINE DRVR OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL	27014 27014 27014 13606 27014	MM74C244N MM74C244N MM74C374N ULN-2013A MM74C374N				
A1U906 A1U907	1858-0047 1820-1216	5	1	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC DCDR TTL LS 3-TO-8-LINE 3-INP	13606 01295	ULN-2003A SN74LS138N				
MP48 MP49 MP50 MP51 MP52	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843	8 9 6 4 2	1 1 2 2 2 4	CARD SHIELD - CKT CARD SHIELD - COMP PC EXTRACTER WHT PIN-GRV 3/32 X 1/4 SCREW M2.5 X 20 LK	28480 28480 28480 28480 28480 28480	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843				
	5040-5193 5040-5194	3 4	1 1	STRAIN RELIEF HOUSING STRAIN RELIEF PLATE	28480 28480	5040-5193 5040-5194				
				NOTE: HP PRODUCT NUMBER 44480A INCLUDES CONNECTOR TERMINAL BLOCK AND STRAIN RELIEF ASSEMBLY.	:					

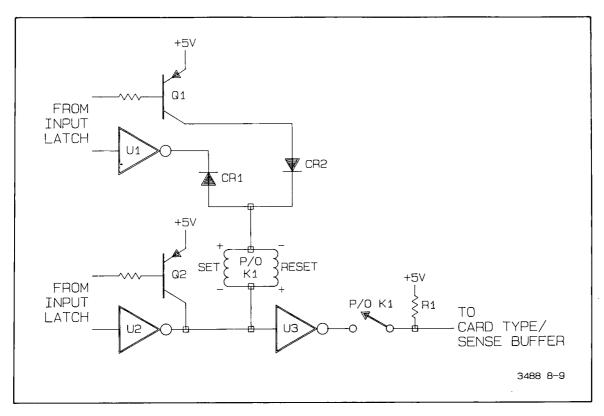


Figure 8-9 One Relay Drive and Sense Circuit

Notice that it is necessary to activate one of the upper drive elements (Q1 or U1) and the lower drive elements (Q2 and U2) in order to change a relay's state. If the elements in only the upper or lower drive are activated, no current flows through the relay coils and the relay retains its previous state. This aspect of operation is used by the mainframe in conjunction with the 44470A's relay sense circuitry to verify relay states following relay contact closures, a card reset, and an instrument reset.

When a relay state is being verified following a closure, a low is applied to the base of Q2 and to the input of U2. This causes a high at the input of inverter U3 causing its output to go low. If the sense switch is in the correct state (closed) a low is applied, through the switch contacts, to the card-type/sense buffer. The controller recognizes this signal as being correct and no error message occurs.

If, following a closure, the sense switch is in the incorrect state (open), the pull-up resistor R1 applies a high to the card-type/sense buffer. The controller recognizes this as an incorrect state and displays ERR:8 LOGIC.

Relay sense operation following a card or instrument reset is similar to that described above with the exception that the controller interprets an open sense switch as the correct state and a closed sense switch as the incorrect state.

8-15 Card-Type/Sense Buffer

The card-type/sense buffer (U901 in Figure 8-12) indicates to the mainframe that a 44470A is in the particular card slot queried. The card type is determined by the wiring configuration of four of the input lines to the card-type/sense buffer. By connecting all four inputs

to ground, a 4-bit code (0000) is created that is recognized by the mainframe as the unique identifier for the 44470A card.

Secondarily, the card-type/sense buffer provides isolation between the outputs of the sense circuits and the mainframe's data bus. This buffer provides the necessary current to drive the data bus.

8-16 Address Decoder

The address decoder (U907 in Figure 8-12) is enabled when the \overline{CS} signal from the main-frame goes low. Once enabled, the address decoder is responsible for enabling the various IC's on the board in response to the instructions it receives via the R/\overline{W} , A0 and A1 signals from the mainframe. Figures 8-10 and 8-11 show the timing relationships between these control lines for both read and write operations.

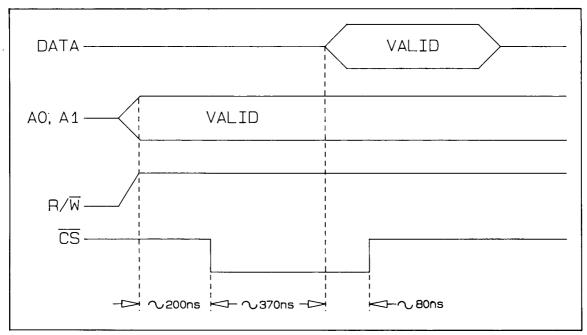


Figure 8-10 Control Line Timing (Read)

8-17 44470A TROUBLESHOOTING

8-18 Introduction

If the Performance Tests (Section 8-5) or Operational Verification tests (Chapter 4) have indicated that a particular relay is failing, that relay is probably at fault. A failure of the relay contact resistance test indicates a bad relay.

If more than one relay failure is indicated, the associated drivers should be suspected. Using Figure 8-12 (44470A Schematic) the problem can be isolated to a few components from the symptoms. The relays on the 44470A circuit board are arranged into three rows and four columns. To close a relay, both a row driver and a column driver must be active. Failures in the drivers, then, will exhibit symptoms that are common to a row or a column.

For example; suppose relays in channels 08 and 09 are failing to close. From the schematic, it is determined that channels 08 and 09 correspond to relays K909 and K910 respectively.

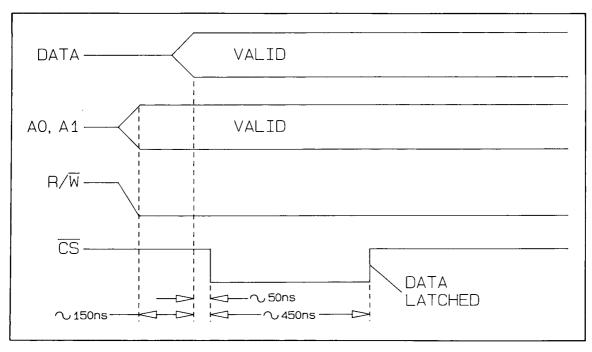


Figure 8-11 Control Line Timing (Write)

Further examination of the schematic reveals that both these relays are in the same row. The drivers Q906, U906, and U905 would be suspected.

As a another example; suppose relays in channels 01, 05 and 09 are failing to close. These channels correspond to relays K902, K906 and K910. These three relays are in a common column. The suspected drivers would be Q901, U904 and U903.

8-19 ERR 8: LOGIC SLOT X

The mainframe error most associated with the plug-in option cards is the ERROR 8: LOGIC error. This error is generated when the controller checks the relays sense circuitry after changing a relay state. The operation of the relay sense circuitry is described in Section 8-14.

The sense circuitry is used by the controller to indicate that a relay did not close when instructed or did not open when instructed. However, the controller does not always check each state. After a power-on reset, a front panel (or remote) reset, or a card reset, the controller checks the sense circuitry for open contacts. If one or more contacts is indicating the closed position, the controller will beep and display ERR 8: LOGIC. After a close command, the controller checks the sense circuitry to determine if the indicated relay is closed. If the sense circuitry indicates the relay is open the controller beeps and displays ERR 8: LOGIC. This action occurs for each relay closure including scan lists and stored set-ups. Following a relay opening, however, the controller does NOT check the sense circuitry for the open. This means that a relay may stick closed and the controller will not flag an error. This occurs for relays opened through the open command, scan lists, and stored set-ups.

In summary, the controller checks for open relays following power-on resets, front panel or remote resets, and card resets. It checks for closed relays following a close command (whether executed by the close command, a scan list or a stored set-up).

When troubleshooting a plug-in card that is generating ERROR: 8 LOGIC it is important to carefully observe the symptoms. If the error is generated when power is applied to the

3488A (controller checking for openings) check the relay contacts to determine if a relay is stuck closed. If no relay is stuck closed, suspect the sense circuitry. If the error is generated following a close command, check the relay contacts to determine if the relay is closed. If the relay is closed, suspect the sense circuitry.

8-20 Equipment Required

Signature Multimeter HP 5005A or equivalent

Service Extender Cable 5061-1174 Service Extender Board 5061-1173

8-21 Initial Checks

The initial checks of a suspected plug-in card will require that the plug-in card shields be removed. Removal of the four screws in the plug-in shield allows both shields to be removed from the plug-in printed circuit board.

Once the shields have been removed, the card to be tested should be installed in slot 1 of the mainframe. There are two ways to do this. The first method uses the Service Extender Board (5061-1173) and the Service Extender Cable (5061-1174). With these two service tools the card may be electrically installed in the card slot but be physically located on the test bench.

If the service extender tools are not available, the card may be installed in slot 1 and the 3488A mainframe top cover removed. This will allow access to the non-component side of the plug-in card for servicing. 3488A top cover removal is described in Chapter 5.

Be sure that all other plug-in cards have been removed from the mainframe.

1. Apply power and measure the +5 Vdc on the plug-in board. There are two supplies to this board, both the supplies (and the grounds) are common on the backplane board. Connect the ground lead of the voltmeter to pin 10 of U901. Measure the voltage at pin 20 of U901. The voltage should be +5 Vdc ± 0.5 Vdc. Measure the voltage at the emitter of any of the discrete transistors on the board (i.e., Q906). The transistors are mounted with the emitter lead in a square pad on the board. The voltage should be +5 Vdc ± 0.5 Vdc.

If the voltages are correct, proceed to Step 2. If either or both of the voltages are incorrect, troubleshoot the +5 Vdc supply in the mainframe (it is possible that the plug-in card is loading the supply).

2. Observe the front panel symptoms to determine if the problem can be isolated to a few components. The Operational Verification tests is Chapter 4 may be used to identify a relay contact or closure problem. If a relay is closing (or opening) correctly, as determined by the relay contact tests, but the mainframe displays ERR 8: LOGIC, the relay sense circuitry is at fault. The mainframe will also display ERR 8: LOGIC if one or more relays are not functioning (refer to Section 8-19 for a discussion of the error message).

If a single relay (channel) is at fault, troubleshoot that relay. If one or more relays indicate a fault, the drivers should be suspected (refer to Section 8-18).

If the problem cannot be isolated easily, proceed to Step 3.

3. Check the mainframe and plug-in card data bus for activity. The data probe of the HP

5005A may be used to indicate activity on the data bus. A blinking probe light indicates state changes. Check the data bus at U902 pins 2, 4, 6, 8, 11, 13, 15 and 17. The plug-in card must be installed in slot 1 and power applied to the mainframe. No special test set-ups should be installed.

All eight data lines should show activity.

If activity is found, proceed to Step 4. If one or more of the lines are stuck, troubleshoot the backplane data bus or the inputs to buffers U901 and U902 on the plug-in card.

4. Check the outputs of U902 at pins 3, 5, 7, 9, 12, 14, 16 and 18 for activity. All eight pins should show activity.

If activity is found, proceed to Step 5. If no activity is found on one or more lines, troubleshoot U902, U905 or U903.

5. Check the backplane card select and decoding lines for activity. Check U907 pins 1, 2, 3, and 4 for activity. All lines should show activity.

If activity is found, proceed to Step 6. If no activity is found, troubleshoot the backplane or the inputs to U907 on the plug-in card.

6. If the problem has not been isolated, signature analysis procedures may be used to test the buffers, drivers, and relay coils. The procedure begins in Section 8-22.

8-22 Buffer, Driver, And Relay Signature Analysis

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

The HP 5005A has been recommended for this signature analysis test because it incorporates adjustable data thresholds. This feature allows signatures to be checked at the relay coils. If a different signature analyzer is being used, the signatures may only be checked up to the drivers.

Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 8-21 should be performed prior to this signature analysis procedure. Section 8-21 also describes the use of the service extender card and service extender cable.

- 1. Signature Analyzer set-up. Polarity: START _/, STOP and CLOCK _. On the controller printed circuit board (A40), connect START/ST/SP to SA2, STOP/QUAL to SA2, CLOCK to SA3, Ground to SA4.
- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. If using the HP 5005A signature analyzer, set the data probe threshold to 2.80 H and 2.00 L.

- 4. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 2 and press execute.
- 5. The signature analyzer should now be gating. The test selected cycles all data lines in a fixed pattern. This pattern will produce one of two signatures (depending upon inversion) that may be traced from the relay coils to the backplane data bus. These signature are: 36U6 and 6HPH.
- 6. The signatures for the inputs and outputs on the 44470A are given in Table 8-2.

8-23 Sense Circuit Troubleshooting

Problems with the sense circuitry will typically exhibit ERR 8: LOGIC in the display. A discussion of the error message as it applies to the plug-in card is given is Section 8-19. A theory of operation of the sense circuitry is given in section 8-14.

The drivers for the sense circuit, U904 and U906, are open collector drivers. This means that one of the relays sense contacts must be closed for the driver to operate. The driver may be manually tested by closing an appropriate relay to provide as current path and exercising the input to the driver.

Problems with the sense circuitry can also be isolated with a signature analysis procedure. This procedure begins in Section 8-24.

8-24 Sense Circuitry Signature Analysis

This procedure checks the signatures at the input to the buffer, U901. This buffer has three inputs from the sense circuitry, pins 11, 15, and 17. Each of these inputs represents a composite signal obtained through several different relays and drivers. The signature analysis procedure is designed so that one column of relays is driven at a time (i.e., K901, K905, and K909 are in column 0). Each relay in the column is sensed by a separate line. By observing the signatures obtained at the input to U901 and knowing which column is being driven to obtain the signature, a problem may be isolated to one driver and a set of relays. If all the signatures are incorrect for a given column, the drivers should be suspected. If only one signature is incorrect, the relay should be suspected.

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 8-21 should be performed prior to this signature analysis procedure. Section 8-21 also describes the use of the service extender card and service extender cable.

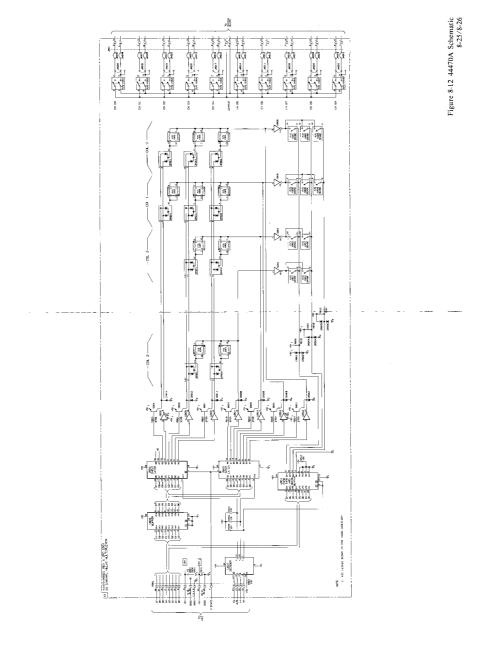
- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC)

and ground (SA4).

- 3. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 3 and press execute.
- 4. The signature analyzer should now be gating. The test drives one column of relays at a time. The 3488A display will show COLUMN 0 SA. Pressing the right arrow key on the front panel increments the column number. Pressing the left arrow key decrements the column number.

This test is very noisy as all the relays are being cycled.

5. The signatures for each column and input of U901 are given in Table 8-3a. Table 8-3b identifies the components that are being used to make up the correct signature.


Table 8-2 Buffer, Driver, And Relay Signatures (Test 2)

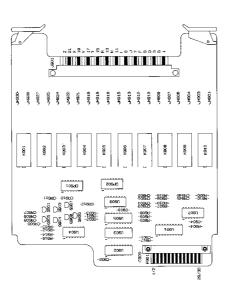

	U	902			U	903		U905					
pin 1	signature NA	pin 20	signature +5 Vdc	pin 1	signature L	pin 20	signature +5 Vdc	pin 1	signature L	pin 20	signature + 5 Vdc		
2	36U6	19	NA	2	6HPH	19	6HPH	2	36U6	19	36U6		
3	36U6	18	36U6	3	3606	18	36U6	3	36U6	18	36U6 36U6		
4	36U6	17 16	36U6	4 5	36U6 6HPH	17 16	36U6 6HPH	4 5	36U6 36U6	17 16	36U6		
5 6	36U6 36U6	15	36U6 36U6	6	6HPH	15	6HPH	6	36U6	15	36U6		
7	36U6	14	36U6	7	36U6	14	36U6	7	36U6	14	36U6		
8	36U6	13	36U6	8	36U6	13	36U6	8	36U6	13	3606		
9	36U6	12	36U6	9	6HPH	12	6HPH	9	36U6	12	36U6		
10	NA NA	11	36U6	10	NA	11	NA	10	NA	11	NA		
10	NO.	• •	0000				,,,,						
	U	904			U	906							
pin	signature	pin	signature	pin	signature	pin	signature						
1	36U6	16	NA	1	NA	16	NA						
2	36U6	15	NA	2	36U6	15	6HPH						
3	6HPH	14	36U6	3	36U6	14	NA						
4	NA	13	NA	4	36U6	13	NA						
5	6HPH	12	36U6	5	36U6	12	6HPH						
6	6HPH	11	36U6	6 7	NA 36U6	11 10	NA 6HPH						
7 8	6HPH NA	10 9	36U6 +5 Vdc	8	NA	9	+5 Vdc						
0	IVA	Э	+5 Vuc	0	INA	9	T 5 Vuc						
	К9	01 *			К9	05 *			К9	08 *			
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	pin 6,12	signature 6HPH		
	К9	02 *			К9	06 *		K909 *					
pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	ріп 6,12	signature 6HPH	pin 1,7	signature 36U6	pin 6,12	signature 6HPH		
	К9	03 *			К9	07 *		K910 *					
							-!		-:	_!_	-:		
pin 1,7	signature 36∪6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 6HPH	pin 6,12	signature 36U6		
	К9	04 *											

Table 8-3a Sense Circuit Signatures

Table 8-3b Components Used For Signatures

	+5 Vdc si	gnature: (6592						
	column O	column 1	column 2	column 3		column 0	column 1	column 2	column 3
U901 pin 17	474A	474A	474A	474A	U901 pin 17	U906	U906	U904	U904
•						K901	K902	K903	K904
U901 pin 15	2P64	2P64	2P64	2P64	U901 pin 15	U906	U906	U904	U904
,						K905	K906	K907	K908
U901 pin 13	PF66	PF66	6592	6592	U901 pin 13	U906	U906	NONE	NONE
F ····					'	K909	K910		

Chapter IX 44471A 10 CHANNEL GENERAL PURPOSE RELAY

LHAPTER IX 1471A 10 CHANNEL GENERAL PURPOSE RELAY

CHAPTER IX

TABLE OF CONTENTS

	Page		FIRST OF LARFER	
9-1	Introduction			
9-2	Plug-In Card Wiring9-2	Tabl	e	Page
9-3	Plug-In Card Cleaning9-2	9-1	Replaceable Parts	9-15
9-4	Contact Protection9-6	9-2	Buffer, Driver, And Relay Signatures	
9-5	Test Fixture9-7		(Test 2)	9-23
9-6	Performance Tests9-7	9-3a	Sense Circuit Signatures	
9-8	44471A DC Isolation Tests9-8	9-3b	Components Used For Signatures	9-23
9-10	44471A Thermal Offset Test9-12			
9-12	Replaceable Parts9-13		LIST OF ILLUSTRATIONS	
9-13	44471A Theory Of Operation9-13			
9-14	Input Buffer And Latch9-13	Figu	re	Page
9-15	Relay Drive And Sense Operation9-14	9-1	44471A Simplified Schematic	
9-16	Card Type/Sense Buffer9-17	9-2	Plug-In Card Wiring	
9-17	Address Decoder9-17	9-3	Typical Snubber Circuit	
9-18	44471A Troubleshooting9-18	9-4	44471A Test Fixture	
9-19	Introduction	9-5	DC Isolation Test Set-Up	9-9
9-20	ERR 8: Logic Slot X9-19	9-6	Open Channel DC Isolation Test	9-10
9-22	Initial Checks9-19	9-7	Channel To Chassis DC Isolation	9-11
9-23	Buffer, Driver, And Relay Signature	9-8	Adjacent Channel DC Isolation	9-12
	Analysis	9-9	44471A Disassembly	9-14
9-24		9-10	One Relay Drive And Sense Circuit	9-17
9-25		9-11	Control Line Timing (Read)	9-18
	· -	9-12	Control Line Timing (Write)	9-18
		0_13	44471 A Schematic	9-29

CHAPTER IX 44471A 10 CHANNEL GENERAL PURPOSE RELAY

9-1 INTRODUCTION

This chapter contains installation information, performance testing information, troubleshooting procedures and replaceable parts lists for the 44471A General Purpose Relay.

The General Purpose Relay contains a 10 channel array of single-pole single-throw (SPST) relays. A simplified schematic of the 44471A switching circuitry is shown in Figure 9-1.

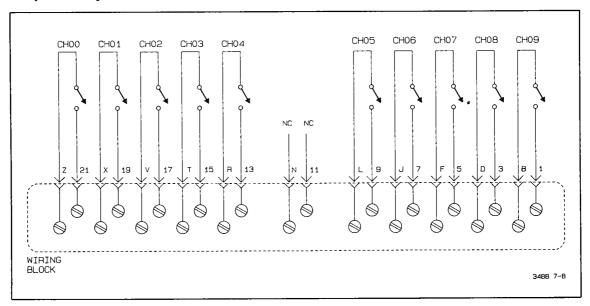


Figure 9-1 44471A Simplified Schematic

WARNING

Hazardous voltages may exist on the wiring and connector of the 44471A plug-in card. Only service trained personnel with a knowledge of electronic circuitry and an awareness of the hazard involved should install, reconfigure, or make repairs to the 3488A and/or the plug-in cards.

NOTE

The Performance Test procedures in this chapter are involved and time consuming. Since the most likely parameter to change with time is the series resistance of a channel, and since the series resistance is tested in the Operation Verification procedures (Chapter 4), it is not recommended that the Performance Tests be conducted unless one of the tested specifications is in question.

9-2 PLUG-IN CARD WIRING

Figure 9-2 shows the proper wiring procedures for the 44471A.

WARNING

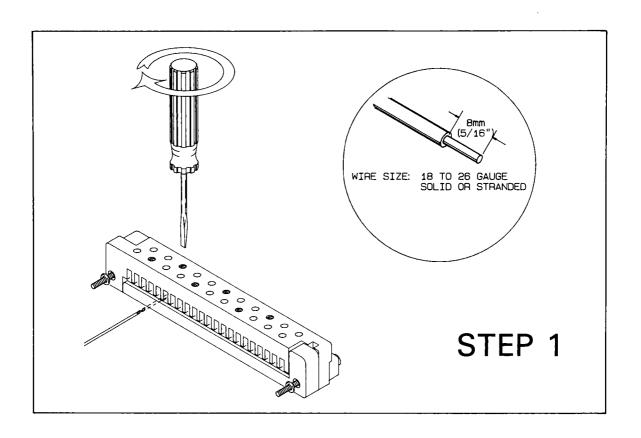
Hazardous voltages may exist on the wiring and connectors of the 3488A's plug-in cards. Only Service Trained Personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and/or the plug-in cards.

9-3 PLUG-IN CARD CLEANING

Printed circuit board contamination can affect the dc isolation and the high frequency performance of the plug-in cards. This contamination can come from dust accumulation, fingerprints, condensation, and so on. The plug-in card printed circuit boards are to be cleaned as follows:

Use anti-static pc board handling techniques during the following procedure.

- 1. Remove the shields from the plug-in card.
- 2. Use a stiff bristled camel hair brush (do not use a wire brush) soaked in isopropyl alcohol to wash the pc board.



DO NOT immerse the printed circuit board in any type of fluid.

- 3. Use the stiff bristled brush soaked in deionized or distilled water, to remove any residue left by the alcohol.
- 4. Allow the printed circuit board to dry thoroughly.
- 5. Replace the shields.

The maximum allowable terminal-to-terminal or terminal-to-chassis voltage limits for the 44471A are 250Vdc or 250Vac rms (350Vac peak). The maximum current limits per channel are 2Adc or 2Aac rms. The maximum current limits per card are 20Adc or 20Aac rms. The maximum power limits per channel are 60Wdc or 500VAac. The maximum power limits per card are 600Wdc or 5000VAac. Damage will occur to the 44471A and possibly the 3488A if any of the above limits are exceeded.

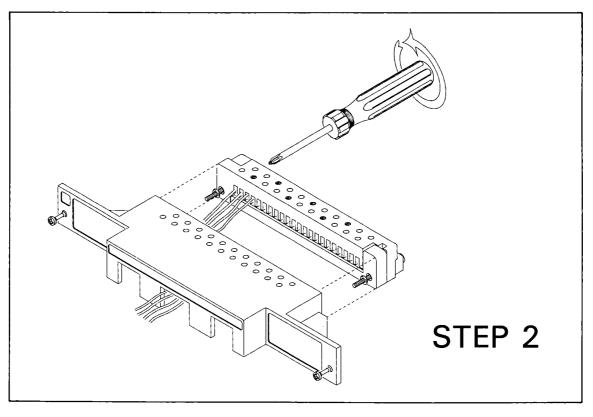


Figure 9-2 Plug-In Card Wiring

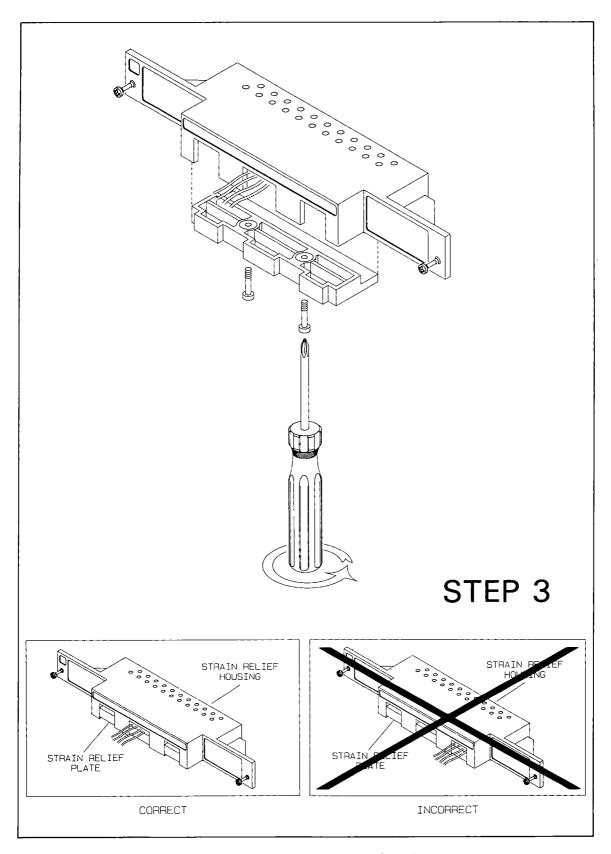
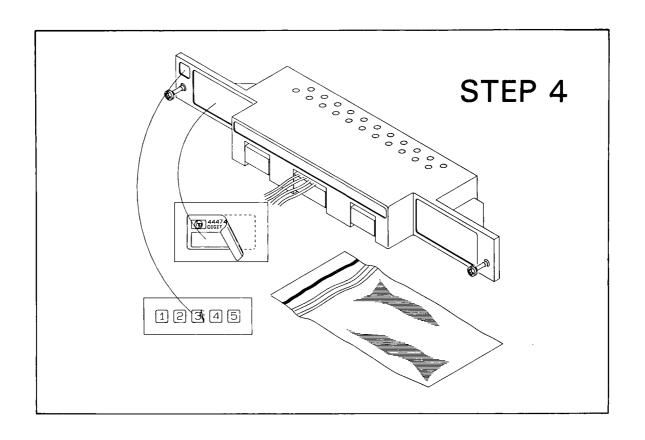



Figure 9-2. Plug-In Card Wiring (Cont'd)

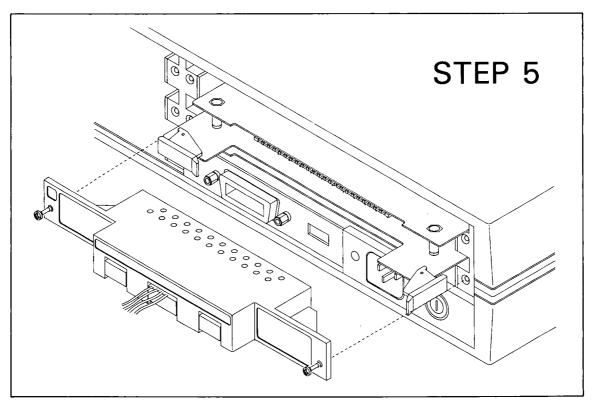


Figure 9-2. Plug-In Card Wiring (Cont'd)

9-4 CONTACT PROTECTION

Provision is made on the 44471A printed circuit board for user-installed contact protection. Sometimes called a snubber network, this protection consists of an RC network and a varistor. Contact protection requirements vary greatly from one application to another. With no contact protection whatsoever, the 44471A will switch a maximum of 250V rms (ac or dc), or 2A rms (ac or dc). The maximum power levels that can be switched per channel without contact protection are 60 W (dc), or 500VA (ac). For loads where the voltage, current, or power is greater than the above limits, contact protection is required.

The component values shown in Figure 9-3 are typical of general purpose snubber circuits. Other component values may be better suited to a particular application. The locations for these components are printed directly onto the 44471A pc board using the same symbols as shown in Figure 9-3.

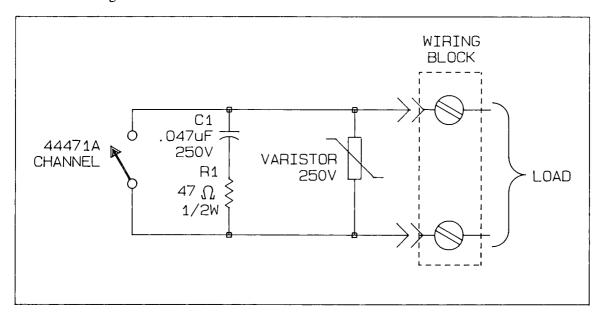


Figure 9-3 Typical Snubber Circuit

The protection resistor (R1) is selected as a compromise between two values. The maximum value of R1 is the value of the load resistance. The minimum value of R1 is determined by the equation:

$$R1 = V/Io$$

Where: V is the peak value of the supply voltage and Io is the maximum allowable relay current (2 Amps rms ac or 2 Amps dc for the 44471A).

The value of the protection capacitor (C1) should be such that it does not allow the voltage across the relay contacts to exceed 353 Volts peak (250V rms = 353V peak). The equation for determining the minimum value of C1 is:

$$C1 \ge (Ip/353)^{2L}$$

Where: Ip is the peak current which is equal to Vpeak/R1 and L is the inductance of the load.

The important parameter for the varistor is that its voltage rating is sufficient to handle the supply voltage. A 250V-rated varistor can be purchased from Hewlett-Packard with the part number 0837-0227.

In most cases, external contact protection (at or near the load) is also beneficial, especially with inductive loads.

It is beyond the scope of this manual to discuss the design criteria for all types of contact protection. A very good tutorial on relay contact protection can be found in:

"Practical Relay Circuits," by Frank J. Oliver. Published by the Hayden Book Company, Inc., New York.

9-5 TEST FIXTURE

A test fixture is required in order to perform the Operation Verification Tests for the 44471A (Chapter 4 of this manual). This fixture simplifies testing by eliminating the need to repeatedly connect and disconnect test leads and by acting as an interface between the 44471A and an ohmmeter.

The test fixture can be either of the following two types:

- a. A test fixture is available from Hewlett-Packard (HP part number 03488-66501). The advantages of this fixture are (1) it requires no assembly and (2) it can be used to test the 44470A, the 44471A, the 44473A and the 44474A plug-in cards without modification.
- b. A test fixture can be constructed by configuring an HP 44481A removable wiring block as shown in Figure 9-4. This particular test fixture can only be used to test the 44471A.

Either type of test fixture short circuits all of the 44471A's inputs together and short circuits all of the outputs together. Thus, by connecting an ohmmeter between the shorted inputs and the shorted outputs, the card is tested by successively closing each relay while checking for an indication of the closure on the ohmmeter.

9-6 PERFORMANCE TESTS

The following Performance Tests check the 44471A's dc isolation and thermal offset specifications. The results of these tests, when coupled with the results of the 44471A Operation Verification Test (Chapter 4), will verify whether or not the 44471A is operating within its critical specifications. Since the 44471A Operation Verification Test assesses the operability of the 44471A, it is important that it be performed prior to performing the Performance Tests.

WARNING

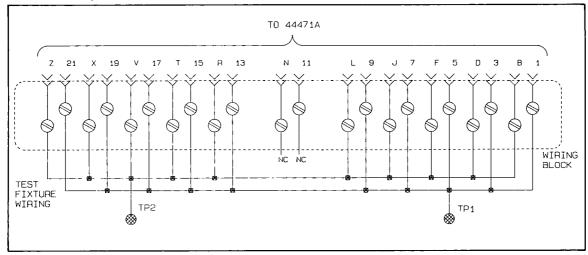
If the 44471A is currently installed into a system, it must be disconnected from the system in order to execute the Performance Tests. This presents two potential safety hazards:

a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).

WARNING

b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected. The user must take the necessary precautions to prevent the above from happening before disconnecting the 44471A.

9-7 Required Test Equipment


DC Power Supply — HP 6216B or equivalent. The power supply must be able to deliver a stable +20Vdc at low current levels.

10 megohm resistor.

Digital Multimeter — HP 3478A or equivalent. The multimeter must have the resolution and accuracy to measure a $1\mu V$ differential dc voltage.

9-8 44471A DC Isolation Tests

The following dc isolation tests incorporate a dc power supply, a resistor of known value,

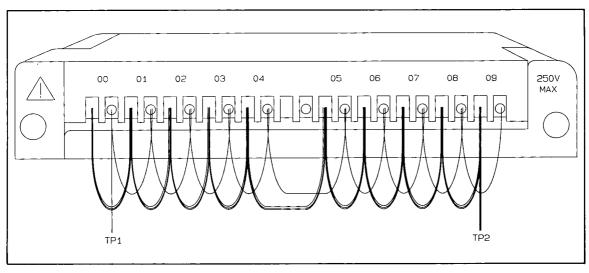


Figure 9-4 44471A Test Fixture

and a dc voltmeter. The first phase of the tests involves connecting the resistor and the dc voltmeter in series with the dc power supply. In this configuration, the resistor and the internal resistance of the dc voltmeter form a voltage divider. The voltage drop across the dc voltmeter is measured and, with the value of the resistor and the power supply voltage being known, the internal resistance of the dc voltmeter is calculated.

NOTE

The best test results will be attained when the value of the known resistor is equal to the internal resistance of the dc voltmeter.

The second phase of the tests consists of (1) placing the appropriate channel of the 44471A in parallel with the dc voltmeter, (2) measuring the voltage drop across the dc voltmeter/channel combination, and (3) calculating the channel's dc isolation.

- 1. SET-UP SEQUENCE: Set the digital multimeter to measure dc voltage. Connect the multimeter to the dc power supply. Set the dc power supply to deliver $\pm .01$ Vdc as measured on the multimeter. This voltage will be referred to as V1 in the following steps.
- 2. Use the multimeter to measure the exact resistance of the 10 megohm resistor. This value will be referred to as R1.
- 3. Connect the test equipment as shown in Figure 9-5.

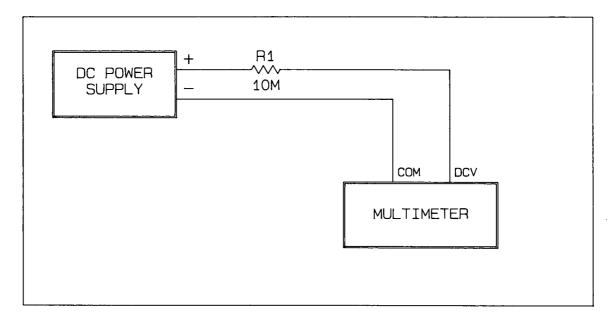


Figure 9-5 DC Isolation Test Set-Up

- 4. Set the multimeter to the 300Vdc range. Record the exact dc voltage reading on the multimeter. This voltage will be referred to as V2 in the following steps.
- 5. Calculate the internal resistance of the multimeter (Rm) using the following equation:

$$Rm = R1 \bullet V2/(V1 - V2)$$

In most cases, the internal resistance of the multimeter is dependent upon the range setting. For this reason, do not change the multimeter's range setting in the following steps.

- 6. OPEN CHANNEL DC ISOLATION TEST: Use the 3488A front panel keys to establish the card monitor mode and to open all channels as follows:
 - a. Press the LOCAL key.
- b. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44471A.
 - c. Press the EXECUTE key.
- d. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44471A.
 - e. Press the EXECUTE key.
- 7. Connect the channel to be tested (channel 00 to start) into the test circuit as shown in Figure 9-6. Record the multimeter's dc voltage reading. This reading will be referred to as V3.

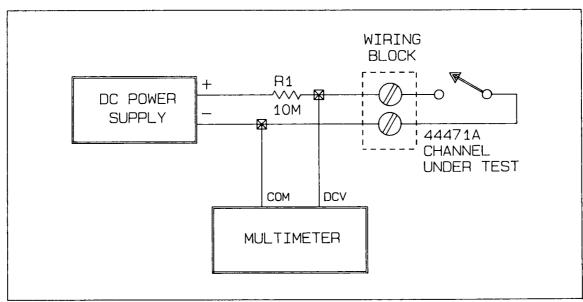


Figure 9-6 Open Channel DC Isolation Test

8. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V3 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V3) - R1 \cdot V3}$$

The open channel dc isolation should be greater than 1 gigohm.

9. Repeat steps 7 and 8 for channels 01 through 09.

- 10. CHANNEL TO CHASSIS DC ISOLATION: Use the 3488A front panel keys to close all channels as follows:
- a. Press the CLOSE key followed by X00,X01,X02,X03,X04,X05,X06,X07,X08,X09 (where X is the slot occupied by the 44471A).
 - b. Press the EXECUTE key.
- 11. Connect the equipment to the 3488A back panel ground connector (chassis ground) and to the channel under test (channel 00 to start) as shown in Figure 9-7.

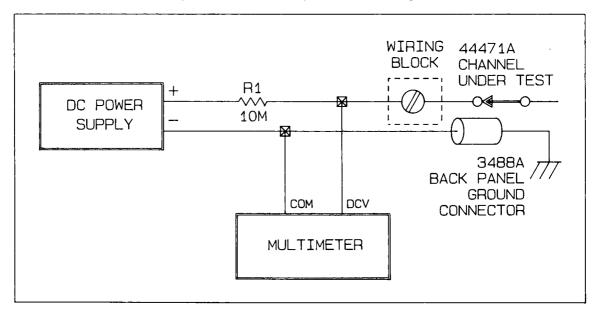


Figure 9-7 Channel To Chassis DC Isolation

- 12. Record the multimeter reading for the channel under test. This voltage will be referred to as V4.
- 13. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V4 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V4) - R1 \cdot V4}$$

The channel to chassis dc isolation should be greater than 10 gigohms for each channel.

- 14. Repeat steps 11 through 13 for channels 01 through 09.
- 15. ADJACENT CHANNEL DC ISOLATION TEST: Close all channels on the 44471A as follows:
 - a. Press the CLOSE key followed by X00,X01,X02,X03,X04,X05,X06,X07,X08,X09
 - b. Press the EXECUTE key.
- 16. Connect the equipment to the adjacent channels under test (channels 00 and 01 to start) as shown in Figure 9-8.

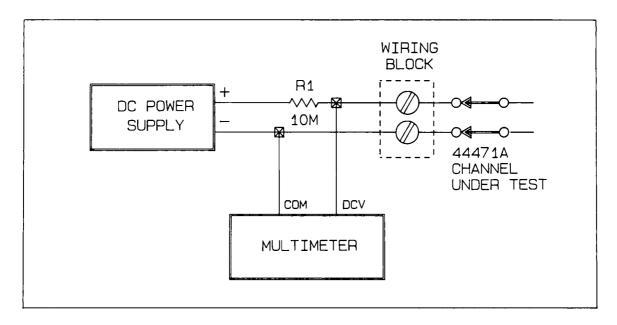


Figure 9-8 Adjacent Channel DC Isolation

- 17. Record the multimeter reading for the adjacent channels under test. This voltage will be referred to as V5.
- 18. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V5 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V5) - R1 \cdot V5}$$

The adjacent channel dc isolation should be greater than 1 gigohm for any adjacent channels.

19. Repeat steps 16 through 18 for adjacent channels 01 and 02, 02 and 03, 03 and 04, 04 and 05, 05 and 06, 06 and 07, 07 and 08, 08 and 09.

9-9 Corrective Action

An open channel isolation failure (step 8) is most likely caused by a failing relay or a damaged or dirty 44471A pc board. If damage is found, contact an HP Sales and Service Office for replacement information. If no damage is found, clean the board thoroughly (see Section 9-3).

A channel to chassis isolation failure (step 13) can be caused by electrical leakage from a relay contact through its drive coil to ground, or by a damaged or dirty 44471A printed circuit board. If damage is found, contact an HP Sales and Service Office for replacement information. If damage is not found, clean the board thoroughly (see Section 9-3).

An adjacent channel isolation failure (step 18) is most likely caused by a damaged or dirty 44471A pc board. If damage is found, contact an HP Sales and Service Office for replacement information. If no damage is found, clean the board thoroughly (see Section 9-3).

9-10 44471A Thermal Offset Test

This is a test of the thermally generated dc voltage present on the 44471A. This test is very

sensitive to ambient temperature changes and thermoelectricity generated at the junction of two dissimilar metals. For these reasons, it is important that this test be performed in an environment where the temperature is stable and that the number of test lead connections are kept to a minimum.

- 1. Set the multimeter to its lowest dc voltage range. Connect the two multimeter test leads together and record the reference offset voltage. This voltage will be referred to as V1 in the following steps.
- 2. Close all channels on the 44471A as follows:
 - a. Press the CLOSE key followed by X00,X01,X02,X03,X04,X05,X06,X07,X08,X09
 - b. Press the EXECUTE key.
- 3. Measure the dc voltage between the two terminals of the channel under test (channel 00 to start). This voltage will be referred to as V2. The difference between V1 and V2 must be less than 3μ V for each channel.
- 4. Repeat step 3 for channels 01 through 09.

9-11 Corrective Action

The most likely cause of a thermal offset failure is the relay. If a failure is found, replace the relay. The relay part number can be found by using the 44471A schematic (Figure 9-13) to determine the component designator for the relay and Table 9-1 to determine the HP part number of the relay. Contact an HP Sales and Service Office for part ordering information.

9-12 REPLACEABLE PARTS

Table 9-1 lists the mechanical and electrical replaceable parts available for the 44471A. The mechanical parts are keyed to Figure 9-9. This figure also provides assembly and disassembly information. The electrical parts are keyed to the schematic and component locator in Figure 9-13. Table 5-2, in Chapter 5, lists manufacturers code numbers as they apply to the parts lists in Table 9-1.

9-13 44471A THEORY OF OPERATION

The 44471A General Purpose Card consists of an input buffer and latch, relay drive and sense circuits, an address decoder, and a card-type/sense buffer. Refer to the 44471A schematic in the following discussions (Figure 9-13).

9-14 Input Buffer And Latch

The input buffer (U902 in Figure 9-13) provides isolation between the 44471A and the mainframe's data bus. An input buffer is present on each type of option card an prevents excessive loading of the data bus by the option cards.

The input latch (U903 and U905 in Figure 9-13) holds the output of the input buffer for application to the relay drive and sense circuitry.

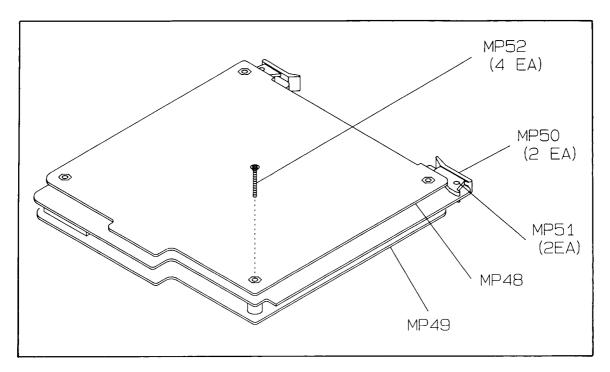


Figure 9-9 44471A Disassembly

9-15 Relay Drive And Sense Operation

A simplified schematic diagram of one relay drive and sense circuit is shown in Figure 9-10. When instructions are received over the data bus to set a relay (close a channel), a logic high level is applied to the base of Q2 and the input of U2 causing their outputs to go low. A logic low level is applied to the base of Q1 causing its output to go high. CR2 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to close the relay contacts. Once closed, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contact in the closed state.

When instructions are received over the data bus to reset a relay (open a channel), a logic low level is applied to the base of Q2 and the input of U2 causing their outputs to go high. A logic high level is applied to the input of U1 causing its output to go low. CR1 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to open the relay contacts. Once opened, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contacts in the opened state.

Notice that it is necessary to activate one of the upper drive elements (Q1 or U1) and the lower drive elements (Q2 and U2) in order to change a relay's state. If the elements in only the upper or lower drive are activated, no current flows through the relay coils and the relay retains its previous state. This aspect of operation is used by the mainframe in conjunction with the 44471A's relay sense circuitry to verify relay states following relay contact closures, a card reset, and an instrument reset.

When a relay state is being verified following a closure, a low is applied to the base of Q2

Table 9-1 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	44471-66501	1	1	GENERAL PURPOSE CARD ERC: 2709	28480	44471-66501
A1C901 A1C902	0160-3847 0160-3847	9 9	4	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480	0160-3 9 47 0160-3847
A1C903 A1C904	0160-3847 0160-3847	9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480	0160-3847 0160-3847
A1 C905	0160-0127	ź	1	CAPACITOR-FXD 1UF +-20% 25VDC CER	28480	0160-0127
A1CR901	1901-0050	3	13	DIODE-SWITCHING 80V 200MA 2NS DO-35	28480	1701-0050
A1CR902 A1CR903	1901-0050 1901-0050	3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480	1901-0050 1901-0050
A1CR904 A1CR906	1901-0050 1901-0050	3 3		DIODE-SWITCHING BOV 200MA 2NS DO-35 DIODE-SWITCHING BOV 200MA 2NS DD-35	28480 28480	1901-0050 1901-0050
A1CR907	1901-0050	3		DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A1CR908 A1CR909	1901-0050 1901-0050	(3)		DIGDE-SWITCHING 80V 200MA 2NS DO-35 DIGDE-SWITCHING 80V 200MA 2NS DO-35	28480 28480	1901-0650 1901-0650
A1CR910	1901-0050	3		DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A1CR911	1901-0050	3		DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A1CR912 A1CR945	1901-0050 1901-0050	3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480	1901-0050 1901-0050
A1CR946	1901-0050	3		DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A1DP901 A1DP902	1906-0229 1906-0229	8	2	DIODE-ARRAY 58V 480MA DIODE-ARRAY 50V 400MA	01295 01295	TID133 TID133
ł		ľ			1 .	
A1 J901	5180-6637		1 20	CONN-2X11 RT ANG RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	44471-62102 7175-0057
A1JM901 A1JM903	7175-0057 7175-0057	5 5	20	RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480	7175-0057
A1JM904 A1JM906	7175-0057 7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175-0957 7175-0057
A1JM907	7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480	2125-0057
A1JM909 A1JM910	71 75-0 057 7175-0057	5 5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175~0057 7175~0057
A1JM912	7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480	7175-0057
A1JM913 A1JM915	7175-0057 7175-0057	5 5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175-0057 7175-0057
A1JM916	7175-0057	5		RESISTOR-ZERO DHMS SOLID TINNED COPPER	28480	7175-0057
A1JM918 A1JM919	71 75 -0057 7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175-0057 7175-0057
A1JH921 A1JH922	7175-0057 7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175-0057 7175-0057
A1JM924	7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480	7175-0057
A1JM925	7175-0057	5		RESISTOR-ZERO DHMS SOLID TINNED COPPER	28480	7175-0057
A1 JM927 A1 JM928	7175-0057 7175-0057	5 5		RESISTOR-ZERO OHMS SOLID TINNED COPPER RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480	7175-0057 7175-0057
A1 JM930	7175-0057	5		RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480	7175-0057
A1K901 A1K902	0490-1337 0490-1337	7	10	RELAY-94EB-L2-5V RELAY-94EB-L2-5V	28480 28480	0490-1337 0490-1337
A1K903 A1K904	0490-1337 0490-1337	7 7		RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V	28480 28480	0490-1337
A1K905	0490-1337	7		RELAY-S4EB-L2-5V	28480	0490-1337 0490-1337
A1K906	0490-1337	7		RELAY-S4EB-L2-5V	28480	0490-1337
A1K907 A1K908	0490-1337 0490-1337	7 7		RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V	28480 28480	0490-1337 0490-1337
A1K909 A1K910	0490-1337 0490-1337	7 7		RELAY-S4EB-L2-5V RELAY-S4EB-L2-5V	28480 28480	0490-1337 0490-1337
A1P901	5180-6697	ا ُ ا	1	CONN-RT ANG 2X15	28480	1251-8645
A19901	1853-0551	<u>.</u> ا ،	7	XSTR-TN4030-237	28480	1853-0551
A1Q903 A1Q904	1853-0551 1853-0551	6	,	XSTR-TN4030-237	28480 28480	1853-0551 1853-0551
A1Q905	1853-0551	6		XSTR-TN4030-237 XSTR-TN4030-237	28480	1853-0551
A1 (1906	1853-0551	6		XSTR-TN4030-237	28480	1853-0551
A1Q907 A1Q908	1853-0551 1853-0551	6		XSTR-TN4030-237 XSTR-TN4030-237	28480 28480	1853-0551 1853-0551
A1R901 A1R902	0683-2725	8 B	7	RESISTOR 2.7K 5% .25W FC TC=-400/+700	01121 01121	CB2725 CB2725
A1R903	0683-2725 0683-2725	8	_	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700	01121	CB2725
A1R904 A1R905	0683-1035 0683-1035	1 1	8	RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121	CB1035 CB1035
A1R906	0683-1035	1		RESISTOR 10K 5% .25W FC TC=-400/+700	01121	CB1035
A1R987 A1R908	0683-1035 0683-1035	1 1		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121	CB1035 CB1035
A1R909 A1R910	0683-1035 0683-1035	1		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121	CB1 035 CB1 035
						··· • • • • •
			1			

Table 9-1 Replaceable Parts (Cont'd)

	Table 5-1 Heplaceable Faits (cont a)									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
A1R912 A1R914 A1R915 A1R916 A1R917	0683-2725 0683-2725 0683-2725 0683-2725 0683-2725 0683-1035	8 8 1		RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB2725 CB1725 CB1 035				
A1R918 A1R919 A1R920	0683-4705 0683-4705 0683-4705	8 8 8	3	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 01121	CB4705 CB4705 CB4705				
A1U901 A1U902 A1U903 A1U904 A1U905	1820-2537 1820-2537 1820-2216 1858-0047 1820-2216	33555	2 2 2	IC DRVR CHOS LINE DRVR OCTL IC DRVR CHOS LINE DRVR OCTL IC FF CHOS D-TYPE POS-EDGE-TRIG OCTL TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF CHOS D-TYPE POS-EDGE-TRIG OCTL	27014 27014 27014 13606 27014	MM74C244N MM74C244N MM74C374N ULN-2003A MM74C374N				
A1U906 A1U907	1858-0047 1820-1216	5 3	1	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC DCDR TTL LS 3-TO-8-LINE 3-INP	13606 01295	ULN-2003A SN74LS13BN				
MP48 MP49 MP50 MP51 MP52	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843	8 9 6 4 2	1 1 2 2 2 4	CARD SHIELD - CKT CARD SHIELD - COMP PC EXTRACTER WHT PIN-GRV 3/32 X 1/4 SCREW M2.5 X 20 LK	28480 28480 28480 28480 28480	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843				
	5040-5193 5040-5194	3 4	1	STRAIN RELIEF HOUSING STRAIN RELIEF PLATE	28480 28480	5040-5193 5040-5194				
				NOTE: HP PRODUCT NUMBER 44481A INCLUDES CONNECTOR TERMINAL BLOCK AND STRAIN RELIEF ASSEMBLY						
	E									
					:					
					·					

and to the input of U2. This causes a high at the input of inverter U3 causing its output to go low. If the sense switch is in the correct state (closed) a low is applied, through the switch contacts, to the card-type/sense buffer. The controller recognizes this signal as being correct and no error message occurs.

If, following a closure, the sense switch is in the incorrect state (open), the pull-up resistor R1 applies a high to the card-type/sense buffer. The controller recognizes this as an incorrect state and displays ERR:8 LOGIC.

Relay sense operation following a card or instrument reset is similar to that described above with the exception that the controller interprets an open sense switch as the correct state and a closed sense switch as the incorrect state.

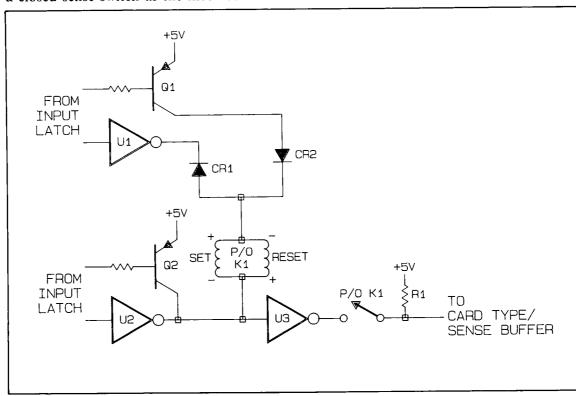


Figure 9-10 One Relay Drive And Sense Circuit

9-16 Card Type/Sense Buffer

The card-type/sense buffer (U901 in Figure 9-13) indicates to the mainframe that a 44471A is in the particular card slot queried. The card type is determined by the wiring configuration of four of the input lines to the card-type/sense buffer. By connecting one input to +5 Vdc and three inputs to ground, a 4-bit code (0001) is created that is recognized by the controller as the unique identifier for the 44471A card.

The card-type/sense buffer also provides isolation between the outputs of the sense circuits and the mainframe's data bus. In short, this buffer provides the necessary current to drive the data bus.

9-17 Address Decoder

The address decoder (U907 in Figure 9-13) is enabled when the $\overline{\text{CS}}$ signal from the main-

frame goes low. Once enabled, the address decoder is responsible for enabling the various IC's on the board in response to the instructions it receives via the R/\overline{W} , A0 and A1 signals from the mainframe. Figures 9-11 and 9-12 show the timing relationships between these control lines for both read and write operations.

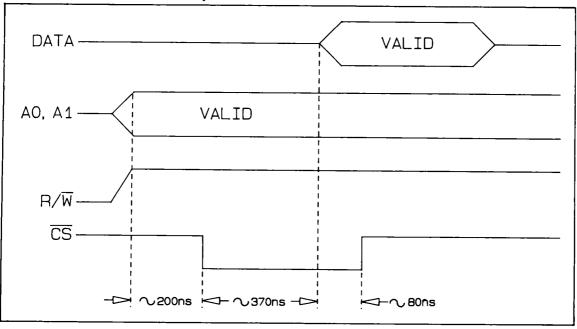


Figure 9-11 Control Line Timing (Read)

9-18 44471A TROUBLESHOOTING

9-19 Introduction

If the Performance Tests (Section 9-6) or Operational Verification tests (Chapter 4) have indicated that a particular relay is failing, that relay is probably at fault. A failure of the relay contact resistance test indicates a bad relay.

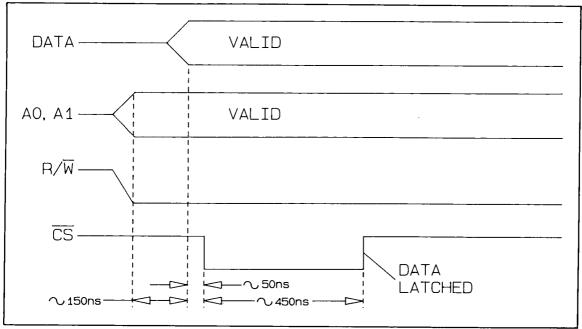


Figure 9-12 Control Line Timing (Write)

If more than one relay failure is indicated, the associated drivers should be suspected. Using Figure 9-13 (44471A Schematic) the problem can be isolated to a few components from the symptoms. The relays on the 44471A circuit board are schematically arranged into three rows and four columns. To close a relay, both a row driver and a column driver must be active. Failures in the drivers, then, will exhibit symptoms that are common to a row or a column.

For example; suppose relays in channels 08 and 09 are failing to close. From the schematic, it is determined that channels 08 and 09 correspond to relays K909 and K910 respectively. Further examination of the schematic reveals that both these relays are in the same row. The drivers Q906, U906, and U905 would be suspected.

As a another example; suppose relays in channels 01, 05 and 09 are failing to close. These channels correspond to relays K902, K906 and K910. These three relays are in a common column. The suspected drivers would be Q901, U904 and U903.

9-20 ERR 8: LOGIC SLOT X

The mainframe error most associated with the plug-in option cards is the ERROR 8: LOGIC error. This error is generated when the controller checks the relays sense circuitry after changing a relay state. The operation of the relay sense circuitry is described in Section 9-15.

The sense circuitry is used by the controller to indicate that a relay did not close when instructed or did not open when instructed. However, the controller does not always check each state. After a power-on reset, a front panel (or remote) reset, or a card reset, the controller checks the sense circuitry for open contacts. If one or more contacts is indicating the closed position, the controller will beep and display ERR 8: LOGIC. After a close command, the controller checks the sense circuitry to determine if the indicated relay is closed. If the sense circuitry indicates the relay is open the controller beeps and displays ERR 8: LOGIC. This action occurs for each relay closure including scan lists and stored set-ups. Following a relay opening, however, the controller does NOT check the sense circuitry for the open. This means that a relay may stick closed and the controller will not flag an error. This occurs for relays opened through the open command, scan lists, and stored set-ups.

In summary, the controller checks for open relays following power-on resets, front panel or remote resets, and card resets. It checks for closed relays following a close command (whether executed by the close command, a scan list or a stored set-up).

When troubleshooting a plug-in card that is generating ERROR: 8 LOGIC it is important to carefully observe the symptoms. If the error is generated when power is applied to the 3488A (controller checking for openings) check the relay contacts to determine if a relay is stuck closed. If no relay is stuck closed, suspect the sense circuitry. If the error is generated following a close command, check the relay contacts to determine if the relay is closed. If the relay is closed, suspect the sense circuitry.

9-21 Equipment Required

Signature Multimeter HP 5005A or equivalent

Service Extender Cable 5061-1174 Service Extender Board 5061-1173

9-22 Initial Checks

The initial checks of a suspected plug-in card will require that the plug-in card shields be

removed. Removal of the four screws in the plug-in shield allows both shields to be removed from the plug-in printed circuit board.

Once the shields have been removed, the card to be tested should be installed in slot 1 of the mainframe. There are two ways to do this. The first method uses the Service Extender Board (5061-1173) and the Service Extender Cable (5061-1174). With these two service tools the card may be electrically installed in the card slot but be physically located on the test bench.

If the service extender tools are not available, the card may be installed in slot 1 and the 3488A mainframe top cover removed. This will allow access to the non-component side of the plug-in card for servicing. 3488A top cover removal is described in Chapter 5.

Be sure that all other plug-in cards have been removed from the mainframe.

1. Apply power and measure the +5 Vdc on the plug-in board. There are two supplies to this board, both the supplies (and the grounds) are common on the backplane board. Connect the ground lead of the voltmeter to pin 10 of U901. Measure the voltage at pin 20 of U901. The voltage should be +5 Vdc ± 0.5 Vdc. Measure the voltage at the emitter of any of the discrete transistors on the board (i.e., Q906). The transistors are mounted with the emitter lead in a square pad on the board. The voltage should be +5 Vdc ± 0.5 Vdc.

If the voltages are correct, proceed to Step 2. If either or both of the voltages are incorrect, troubleshoot the +5 Vdc supply in the mainframe (it is possible that the plug-in card is loading the supply).

2. Observe the front panel symptoms to determine if the problem can be isolated to a few components. The Operational Verification tests is Chapter 4 may be used to identify a relay contact or closure problem. If a relay is closing (or opening) correctly, as determined by the relay contact tests, but the mainframe displays ERR 8: LOGIC, the relay sense circuitry is at fault. The mainframe will also display ERR 8: LOGIC if one or more relays are not functioning (refer to Section 9-20 for a discussion of the error message).

If a single relay (channel) is at fault, troubleshoot that relay. If one or more relays indicate a fault, the drivers should be suspected (refer to Section 9-19).

If the problem cannot be isolated easily, proceed to Step 3.

3. Check the mainframe and plug-in card data bus for activity. The data probe of the HP 5005A may be used to indicate activity on the data bus. A blinking probe light indicates state changes. Check the data bus at U902 pins 2, 4, 6, 8, 11, 13, 15 and 17. The plug-in card must be installed in slot 1 and power applied to the mainframe. No special test set-ups should be installed.

All eight data lines should show activity.

If activity is found, proceed to Step 4. If one or more of the lines are stuck, troubleshoot the backplane data bus or the inputs to buffers U901 and U902 on the plug-in card.

4. Check the outputs of U902 at pins 3, 5, 7, 9, 12, 14, 16 and 18 for activity. All eight pins should show activity.

If activity is found, proceed to Step 5. If no activity is found on one or more lines, troubleshoot U902, U905 or U903.

5. Check the backplane card select and decoding lines for activity. Check U907 pins 1, 2, 3, and 4 for activity. All lines should show activity.

If activity is found, proceed to Step 6. If no activity is found, troubleshoot the backplane or the inputs to U907 on the plug-in card.

6. If the problem has not been isolated, signature analysis procedures may be used to test the buffers, drivers, and relay coils. The procedure begins in Section 9-23.

9-23 Buffer, Driver, And Relay Signature Analysis

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

The HP 5005A has been recommended for this signature analysis test because it incorporates adjustable data thresholds. This feature allows signatures to be checked at the relay coils. If a different signature analyzer is being used, the signatures may only be checked up to the drivers.

Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 9-22 should be performed prior to this signature analysis procedure. Section 9-22 also describes the use of the service extender card and service extender cable.

- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. If using the HP 5005A signature analyzer, set the data probe threshold to 2.80 H and 2.00 L.
- 4. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 2 and press execute.
- 5. The signature analyzer should now be gating. The 3488A display will show RELAY S.A. The test selected cycles all data lines in a fixed pattern. This pattern will produce one of two signatures (depending upon inversion) that may be traced from the relay coils to the backplane data bus. These signature are: 36U6 and 6HPH.
- 6. The signatures for the inputs and outputs on the 44471A are given in Table 9-2.

9-24 Sense Circuit Troubleshooting

Problems with the sense circuitry will typically exhibit ERR 8: LOGIC in the display. A discussion of the error message as it applies to the plug-in card is given is Section 9-20. A theory of operation of the sense circuitry is given in section 9-15.

The drivers for the sense circuit, U904 and U906, are open collector drivers. This means that one of the relays sense contacts must be closed for the driver to operate. The driver may be manually tested by closing an appropriate relay to provide as current path and exercising the input to the driver.

Problems with the sense circuitry can also be isolated with a signature analysis procedure. This procedure begins in Section 9-25.

9-25 Sense Circuitry Signature Analysis

This procedure checks the signatures at the input to the buffer, U901. This buffer has three inputs from the sense circuitry, pins 11, 15, and 17. Each of these inputs represents a composite signal obtained through several different relays and drivers. The signature analysis procedure is designed so that one column of relays is driven at a time (i.e., K901, K905, and K909 are in column 0). Each relay in the column is sensed by a separate line. By observing the signatures obtained at the input to U901 and knowing which column is being driven to obtain the signature, a problem may be isolated to one driver and a set of relays. If all the signatures are incorrect for a given column, the drivers should be suspected. If only one signature is incorrect, the relay should be suspected.

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

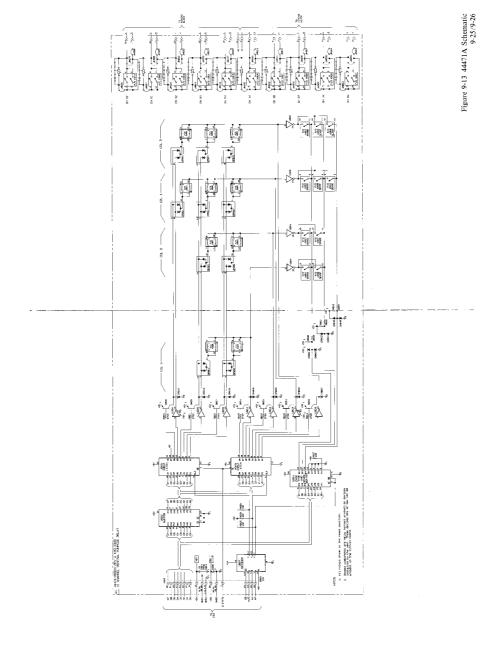
Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 9-22 should be performed prior to this signature analysis procedure. Section 9-22 also describes the use of the service extender card and service extender cable.

- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 3 and press execute.
- 4. The signature analyzer should now be gating. The test drives one column of relays at a time. The 3488A display will show COLUMN 0 SA. Pressing the right arrow key on the front panel increments the column number. Pressing the left arrow key decrements the column number.

This test is very noisy as all the relays are being cycled.

5. The signatures for each column and input of U901 are given in Table 9-3a. Table 9-3b identifies the components that are being used to make up the correct signature.


Table 9-2 Buffer, Driver, And Relay Signatures (Test 2)

				+	5 Vdc sig	nature	: 5C1C				
	US	902			US		U905				
pin 1	signature NA	pin 20	signature +5 Vdc	pin 1	signature L	pin 20	signature + 5 Vdc	pin 1	signature L	pin 20 19	signature + 5 Vdc 36U6
2 3	36U6 36U6	19 18	NA 36U6	2 3	6HPH 36U6	19 18	6HPH 36U6	2 3	36U6 36U6	18	36U6 36U6
4	36U6	17	36U6	4	36U6	17	36U6	4	36U6	17	36U6
5	36U6	16	36U6	5	6HPH	16	6HPH	5	36U6	16	36U6
6	36U6	15	36U6	6	6НРН	15	6НРН	6	36U6	15	36U6
7	36U6	14	36U6	7	36U6	14	36U6	7	36U6	14	36U6
8	36U6	13	36U6	8	36U6	13	36U6	8	36U6	13	36U6
9	36U6	12	36U6	9	6HPH	12	6HPH	9	36U6	12	36U6
10	NA	11	36U6	10	NA	11	NA	10	NA	11	NA
	U	904			U	906					
pin	signature	pin	signature	pin	signature	pin	signature				
1	36U6	16	NA	1	ŅΑ	16	NA				
2	36U6	15	NA	2	36U6	15	6НРН				
3	6HPH	14	36U6	3	36U6	14	NA				
4	NA	13	NA	4	36U6	13	NA				
5	6HPH	12	36U6	5	36U6	12	6HPH				
6	6HPH	11	36U6	6	NA	11	NA				
7	6HPH	10	36U6	7	36U6	10	6HPH				
8	NA	9	+5 Vdc	8	NA	9	+5 Vdc				
	К9	01 *		K905 *				K908 *			
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	pin 6,12	signature 6HPH
	К9	02 *		K906 *			K909 *				
pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 36U6	pin 6,12	signature 6HPH
	K903 *				K907 *			K910 *			
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 6HPH	pin 6,12	signature 36U6
	К9	04 *									
pin 1,7	signature 6HPH	pin 6,12	signature 36U6		* these	signati	ures have a d	ata thres	hold of 2.	80 H a	and 2.0 L.

Table 9-3a Sense Circuit Signatures

Table 9-3b Components Used For Signatures

-	+5 Vdc si	gnature: 6	5592						
	column 0	column 1	column 2	column 3	•	column 0	column 1	column 2	column 3
U901 pin 17	474A	474A	474A	474A	U901 pin 17	U906 K901	U906 K902	U904 K903	U904 K904
U901 pin 15	2P64	2P64	2P64	2P64	U901 pin 15	U906 K905	U906 K906	U904 K907	U904 K908
U901 pin 13	PF66	PF66	6592	6592	U901 pin 13	U906 K909	U906 K910	NONE	NONE

Chapter X 44472A DUAL 4 CHANNEL VHF SWITCH

CHAPTER X

TABLE OF CONTENTS

10-1 10-2 10-3 10-5 10-7 10-9 10-16 10-17 10-18 10-19 10-20 10-21 10-22 10-23 10-25	Introduction Plug-In Card Cleaning Performance Tests 44472A DC Isolation Tests 44472A Thermal Offset Test High Frequency Tests Replaceable Parts 44472A Theory Of Operation Input Buffer And Latch Relay Drive Operation Card-Type Buffer Address Decoder 44472A Troubleshooting Introduction Initial Checks	. 10-2 . 10-2 . 10-3 . 10-8 . 10-9 10-17 10-20 10-20 10-21 10-21 10-21 10-21
10-26	Buffer, Driver, And Relay Signature Analysis	
Table 10-1 10-2 10-3	Channels Under Test/Adjacent Channels. Replaceable Parts Buffer, Driver, And Relay Signatures (Test 2)	10-18
Figure	LIST OF ILLUSTRATIONS	Page
10-1	44472A Simplified Schematic	
10-2	DC Isolation Test Set-Up	. 10-4
10-3	Open Channel DC Isolation Test	
10-4	Channel To Chassis DC Isolation	
10-5	High To Low DC Isolation	
10-6	Insertion Loss Calibration Setup	
10-7	44472A Disassembly	10-17
10-8	One Relay Drive Circuit	
10-9	Control Line Timing (Read)	
10-10	Control Line Timing (Write)	
10-11	44472A Schematic	. 10-27

CHAPTER X 44472A DUAL 4 CHANNEL VHF SWITCH

10-1 INTRODUCTION

This chapter contains installation information, performance testing information, troubleshooting information, and replaceable parts lists for the 44472A Dual 4 Channel VHF Switch.

The VHF switch consists of two 4 channel to 1 channel multiplexers with BNC connectors. Only the center conductor of each channel is switched. The outer conductors (shields) of all channels in a particular multiplexer are connected together and unswitched. A simplified schematic of the 44472A is shown in Figure 10-1.

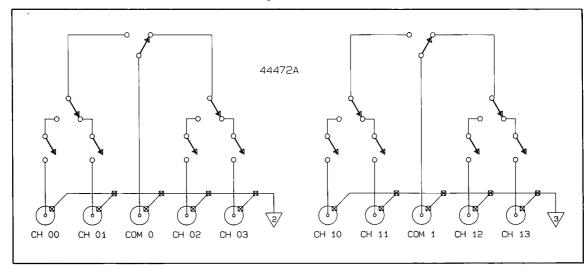


Figure 10-1 44472A Simplified Schematic

WARNING

Hazardous voltage may exist on the wiring and connectors of the 44472A plug-in card. Only service trained personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and or the plug-in cards.

NOTE

The Performance Test procedures in this chapter are involved and time consuming. Since the most likely parameter to change with time is the series resistance of a channel, and since the series resistance is tested in the Operation Verification procedures (Chapter 4), it is not recommended that the Performance Tests be conducted unless one of the tested specifications is in question.

10-2 PLUG-IN CARD CLEANING

Printed circuit board contamination can affect the dc isolation and the high frequency performance of the plug-in cards. This contamination can come from dust accumulation, fingerprints, condensation, and so on. The plug-in card printed circuit boards are to be cleaned as follows:

ECAUTION

Use anti-static pc board handling techniques during the following procedure.

- 1. Remove the shields from the plug-in card.
- 2. Use a stiff bristled camel hair brush (do not use a wire brush) soaked in isopropyl alcohol to wash the pc board.

DO NOT immerse the printed circuit board in any type of fluid.

- 3. Use the stiff bristled brush soaked in deionized or distilled water, to remove any residue left by the alcohol.
- 4. Allow the printed circuit board to dry thoroughly.
- 5. Replace the shields.

The maximum allowable voltage limits (center conductor-to-center conductor, or center conductor-to-shield) for the 44472A are 250Vdc or 30Vac rms (42Vac peak).* The maximum allowable dc voltage limit (shield-to-chassis or shield-to-shield) for the 44472A is 42Vdc. The maximum current limits (per channel) are 30mA dc or 300mA ac rms.* Damage will occur to the 44472A and possibly the 3488A if any of the above limits are exceeded.

10-3 PERFORMANCE TESTS

The following Performance Tests check the 44472A's dc isolation, thermal offset, insertion loss, VSWR, and channel to channel crosstalk specifications. The results of these tests, when coupled with the results of the 44472A Operation Verification Test, will verify whether or not the 44472A is operating within its critical specifications. The 44472A Operation Verification Test is located in Chapter 4 of this manual. Since the 44472A Operation Verification Test assesses the operability of the 44472A, it is important that it be performed prior to performing the Performance Tests.

^{*} To maintain compliance with VDE class B or FTZ 1115/83 radiation limits, use semi-rigid or equivalent coax cable and limit the signal to $< 20 \text{ V} \times \text{Hz}$.

WARNING

If the 44472A is currently installed into a system, it must be disconnected from the system in order to execute the Performance Tests. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected. The user must take the necessary precautions to prevent the above from happening before disconnecting the 44472A.

10-4 Required Test Equipment

DC Power Supply — HP 6216B or equivalent. The power supply must be able to deliver a stable + 20Vdc at low current levels.

10 megohm resistor.

Digital Multimeter — HP 3478A or equivalent. The multimeter must have the resolution and accuracy to measure a $1\mu V$ differential dc voltage.

HP 8505A RF Network Analyzer

HP 8503A (50 Ohm) S-Parameter Test Set

BNC-type Direct Feedthru Connector (Male Barrel)

BNC-type Shorting Connector

BNC-type 50 Ohm Termination

10-5 44472A DC Isolation Tests

The following dc isolation tests incorporate a dc power supply, a resistor of known value, and a dc voltmeter. The first phase of the tests involves precisely setting the dc power supply's output voltage and connecting the resistor and the dc voltmeter in series with the power supply. In this configuration, the resistor and the internal resistance of the dc voltmeter form a voltage divider. The voltage drop across the dc voltmeter is measured and, with the value of the resistor and the power supply voltage being known, the internal resistance of the dc voltmeter is calculated.

NOTE

The best test results will be obtained when the value of the known resistor is equal to the internal resistance of the dc voltmeter.

The second phase of the tests consists of (1) placing the appropriate channel of the 44472A in parallel with the dc voltmeter, (2) measuring the voltage drop across the dc voltmeter/channel combination, and (3) calculating the channel's dc isolation.

- 1. SET-UP SEQUENCE: Set the digital multimeter to measure dc voltage. Connect the multimeter to the dc power supply. Set the dc power supply to deliver $\pm .01$ Vdc as measured on the multimeter. This voltage will be referred to as V1 in the following steps.
- 2. Use the multimeter to measure the exact resistance of the 10 megohm resistor. This value will be referred to as R1.
- 3. Connect the test equipment as shown in Figure 10-2.
- 4. Set the multimeter to the 300Vdc range. Record the exact dc voltage reading on the multimeter. This voltage will be referred to as V2 in the following steps.

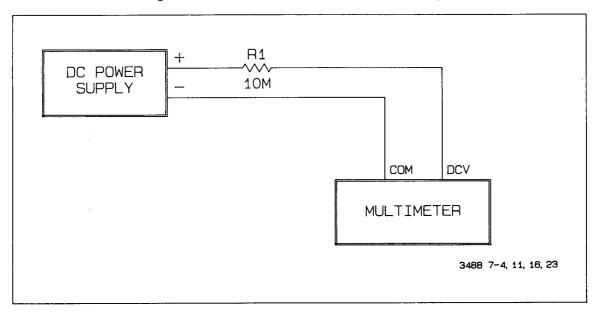


Figure 10-2 DC Isolation Test Set-Up

5. Calculate the internal resistance of the multimeter (Rm) using the following equation:

$$Rm = R1 \cdot V2/(V1 - V2)$$

NOTE

In most cases, the internal resistance of the multimeter is dependent upon the range setting. For this reason, do not change the multimeter's range setting in the following steps.

- 6. OPEN CHANNEL DC ISOLATION TEST: use the 3488A front panel keys to reset the 44472A and to establish the card monitor mode and a scan list as follows:
 - a. Press the LOCAL key.
- b. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - c. Press the EXECUTE key.

- d. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - e. Press the EXECUTE key.
- f. Press the SCAN LIST key followed by X00 through X13 (where X is the slot occupied by the 44472A and 00 through 13 are the channels to be scanned).
 - g. Press the EXECUTE key.
- 7. Connect the center conductor of the COM 0 connector into the test circuit as shown in Figure 10-3.
- 8. Connect the center conductor of the channel under test (channel 00 to start) into the test circuit as shown in Figure 10-3. Successively press the STEP key until the channel adjacent to the channel under test (channel 01 to start) appears in the display. Record the multimeter's de voltage reading for the channel under test. This reading will be referred to as V3.

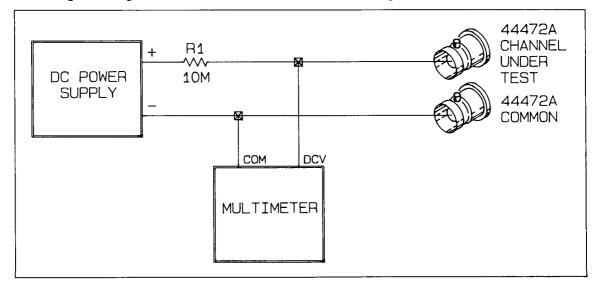


Figure 10-3 Open Channel DC Isolation Test

9. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V3 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V3) - R1 \bullet V3}$$

The open channel dc isolation must be greater than 10 megohms.

10. Repeat steps 8 and 9 for the Group 0 channels shown in Table 10-1.

Table 10-1 Channels Under Test/Adjacent Channels

GROUP 0	CHANNELS	GROUP 1 CHANNELS			
UNDER TEST	ADJACENT	UNDER TEST	ADJACENT		
01 02 03	02 03		11 10 13 12		

- 11. Connect the center conductor of the COM 1 connector into the test circut as was done with COM 0 in step 7. Repeat steps 8 and 9 for the Group 1 channels shown in Table 10-1.
- 12. CHANNEL TO CHASSIS DC ISOLATION: Use the 3488A front panel keys to establish the card monitor mode and a scan list as follows:
- a. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X13 (where X is the slot occupied by the card under test and 00 through 13 are the channels to be scanned).
 - d. Press the EXECUTE key.
- 13. Connect the center conductor of the COM 0 connector and the 3488A backpanel chassis ground terminal into the test circuit as shown in Figure 10-4.

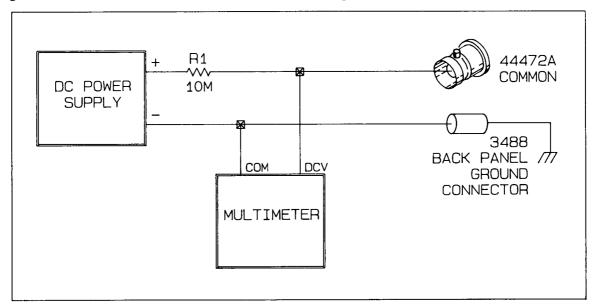


Figure 10-4 Channel to Chassis DC Isolation

- 14. Press the STEP key. Record the multimeter reading for the channel shown in the 3488A's display. This voltage will be referred to as V4.
- 15. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V4 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V4) - R1 \bullet V4}$$

The channel to chassis dc isolation should be greater than 10 megohms for each channel.

- 16. Repeat steps 14 and 15 for channels 01 through 03.
- 17. Connect the center conductor of the COM 1 connector into the test circuit as was done with COM 0 in step 13. Repeat steps 14 and 15 for channels 10 through 13.

- 18. HIGH TO LOW DC ISOLATION TEST: Use the 3488A front panel keys to establish the card monitor mode and a scan list as follows:
- a. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X13 (where X is the slot occupied by the card under test and 00 through 13 are the channels to be scanned).
 - d. Press the EXECUTE key.
- 19. Connect the COM 0 connector the test circuit as shown in Figure 10-5.

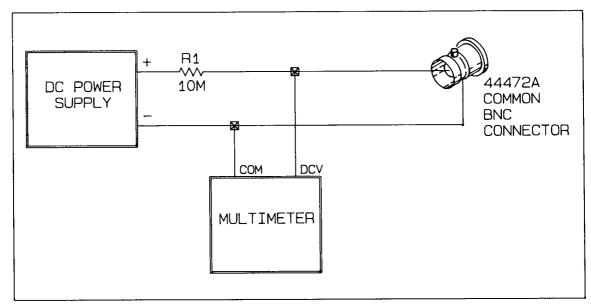


Figure 10-5 High To Low DC Isolation

- 20. Press the STEP key. Record the multimeter reading for the channel shown in the 3488A's display. This voltage will be referred to as V5.
- 21. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V5 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V5) - R1 \cdot V5}$$

The high to low dc isolation should be greater than 10 megohms for each channel.

- 22. Repeat steps 20 and 21 for channels 01 through 03.
- 23. Connect the COM 1 connector into the test circuit as was done with COM 0 in step 19. Repeat steps 20 and 21 for channels 10 through 13.

10-6 Corrective Action

An open channel isolation failure (step 9) is most likely caused by a failing relay or a dam-

aged or dirty 44472A printed circuit board. If damage is found, contact an HP Sales and Service Office for replacement information. If no damage is found, clean the board thoroughly (see Section 10-2).

A channel to chassis isolation failure (step 15) can be caused by electrical leakage from a relay contact through its drive coil to ground, or a damaged or dirty 44472A printed circuit board. If damage is found, contact an HP Sales and Service Office for 44472A replacement information. If no damage is found, clean the board thoroughly (see Section 10-2).

A high to low failure (step 21) is most likely caused by a damaged or dirty 44472A printed circuit board. If damage is found, contact an HP Sales and Service Office for 44472A replacement information. If damage is not found, clean the board thoroughly (see Section 10-2).

10-7 44472A Thermal Offset Test

This is a test of the thermally generated dc voltage present on the 44472A. This test is very sensitive to ambient temperature changes and thermoelectricity generated at the junction of two dissimilar metals. For these reasons, it is important that this test be performed in an environment where the temperature is stable and that the number of test lead connections are kept to a minimum.

- 1. Set the multimeter to its lowest dc voltage range. Connect the two multimeter test leads together and record the reference offset voltage. This voltage will be referred to as V1 in the following steps.
- 2. Establish the card monitor mode and a scan list as follows:
- a. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - b. Press the EXECUTE key.
- c. Press the SCAN LIST key followed by X00-X13 (where X is the slot occupied by the 44472A and 00-13 are the channels to be scanned.
 - d. Press the EXECUTE key.
- 3. Connect the multimeter's common test lead to the center conductor of the COM 0 connector.
- 4. Press the STEP key.
- 5. Measure the dc voltage on the center conductor of the channel shown in the display. This voltage will be referred to as V2. The difference between V1 and V2 must be less than 15μ V.
- 6. Repeat steps 4 and 5 for channels 01 through 03.
- 7. Connect the multimeter's common test lead to the center conductor of the COM 1 connector.
- 8. Repeat steps 4 and 5 for channels 10 through 13.

10-8 Corrective Action

The most likely cause of a thermal offset failure is one or more of the relays in the failed channel. If a failure is found, replace the relay. The relay part number can be found by using the 44472A schematic (Figure 10-11) to determine the component designator for the relay and Table 10-2 to determine the HP part number of the relay. Contact an HP Sales and Service Office for part ordering information.

10-9 High Frequency Tests

The following insertion loss, VSWR, and crosstalk tests use an HP 8505A network Analyzer coupled with an HP 8503A S-parameter Test Set. Each test consists of (1) a setup sequence, (2) a calibration sequence, and (3) a measurement sequence. The setup sequence merely establishes the proper switch settings for the ensuing calibration sequence. The calibration sequence is done without the 44472A in the circuit and compensates for the effects caused by the hook-up cabling. After calibration, the 44472A is inserted into the circuit for the measurement sequence. To achieve an accurate test, it is very important that the cabling configuration for the calibration sequence be as similar as possible to the cabling configuration for the measurement sequence. In other words, the major difference in configuration between the calibration and the measurement sequences should be the insertion of the 44472A itself. Additionally, it is important that the shields be installed on the 44472A for these tests.

10-10 Insertion Loss Test

- 1. Set the S-PARAMETER SELECT Switch on the 8503A to the FORWARD position.
- 2. Set the signal levels on the 8505A as follows:
 - a. Set the INPUT LEVEL dBm MAX Switch to the -10 position.
 - b. Set the OUTPUT LEVEL dBm Switch to the +10 position.
 - c. Set the OUTPUT LEVEL dBm Vernier to the 0 position.
- 3. Select the measurement on the 8505A as follows:
- a. Set the CHANNEL 1 INPUT Switch to the B/R position (this selects a transmission measurement).
 - b. Set the MODE Switch to the MAG position (this selects the magnitude ratio).
 - c. Set the SCALE/DIV Switch to the .1dB/division position.
 - d. Set the CHANNEL 2 MODE Switch to the OFF position.
 - e. Set the ELECTRICAL LENGTH MODE Switch to the OFF position.
- 4. Set the CRT display on the 8505A as follows:
- a. Press the REF LINE POSN/BEAM CENTER Switch to display the reference line. Rotate the CH1 vernier until the reference line is positioned on the center horizontal graticule.

- 5. Set the Frequency Sweep on the 8505A as follows:
 - a. Set the RANGE MHz Switch to the LIN .5-130 range.
 - b. Set the sweeper MODE Switch to the LIN EXPAND position.
 - c. Set the sweeper WIDTH Switch to the START/STOP 1 position.
- d. Rotate the START FREQUENCY controls until the START FREQUENCY display reads .022.
- e. Rotate the STOP FREQUENCY controls until the STOP FREQUENCY display reads 130.0.
- 6. Calibrate the 8505A as follows:
- a. Connect the 8505A and the 8503A together as shown in Figure 10-6. Use a shorting connector to connect Port 1 and Port 2 of the 8503A together as shown in Figure 10-6.
 - b. Rotate the OUTPUT Vernier counterclockwise until the OVERLOAD light turns off.
- c. Set the MARKERS Switch to position 1. Rotate the MARKERS 1 vernier to set the measurement marker to 100MHz.
- d. Press the CHANNEL 1 MKR button. Press and hold the the ZRO button until the iterative zero process is complete and the trace moves to the reference line. This establishes the reference at 0dB.
- 7. Remove any external wiring from the rear of the 44472A.
- 8. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
- 9. Connect the 44472A's channel 00 connector to Port 2 of the 8503A.
- 10. Using the 3488A's front panel, close channel 00 as follows:
 - a. Press the LOCAL key.
- b. Press the CLOSE key followed by X00 (where X is the slot occupied by the 44472A and 00 is the channel to be closed).
 - c. Press the EXEC key.
- 11. Press the MKR button to display the marker displacement (in dB) from the reference line. The marker displacement (insertion loss) should be <.75 dB at 100MHz.
- 12. Repeat steps 9 through 11 for channels 01, 02, and 03.
- 13. Connect the 44472A's COM 1 connector to Port 1 of the 8503A. Repeat steps 9 through 11 for channels 10, 11, 12, and 13.

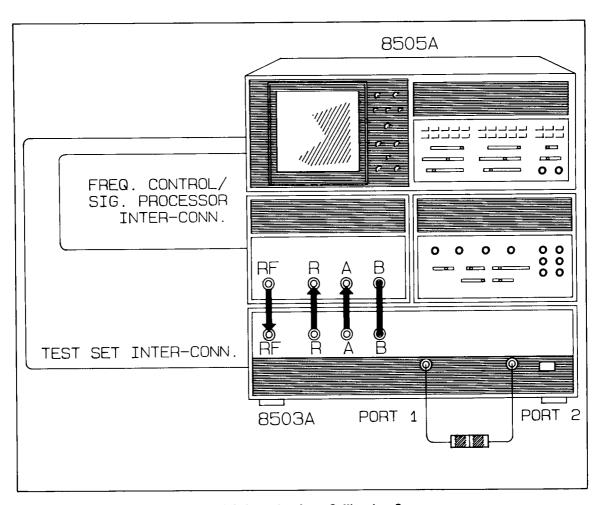


Figure 10-6 Insertion Loss Calibration Setup

NOTE

The above test checks insertion loss at 100MHz. Insertion loss can be tested at other frequencies by inserting those frequencies into steps 5a and 6c.

10-11 Corrective Action

An insertion loss failure is most likely caused by a higher than normal series resistance in the failed channel. Relay contact(s) and BNC connectors are the probable suspects. If an insertion loss failure is encountered, use Figure 10-11 (44472A schematic) to determine the component designator of the failing component and Table 10-2 to determine the HP part number of the component. Contact an HP Sales and Service Office for part ordering information.

10-12 Voltage Standing Wave Ratio (VSWR) Test

This test measures the return loss of the 44472A from which the voltage standing wave ratio (VSWR) is calculated.

NOTE

Connect the 8505A to the 8503A as shown in Figure 10-6.

- 1. Set the S-PARAMETER SELECT Switch on the 8503A to the FORWARD position.
- 2. Set the signal levels on the 8505A as follows:
 - a. Set the INPUT LEVEL dBm MAX Switch to the -10 position.
 - b. Set the OUTPUT LEVEL dBm Switch to the +10 position.
 - c. Set the OUTPUT LEVEL dBm Vernier to the 0 position.
- 3. Select the measurement on the 8505A as follows:
 - a. Set the CHANNEL 1 INPUT Switch to the A/R position.
 - b. Set the MODE Switch to the MAG position (this selects the magnitude ratio).
 - c. Set the SCALE/DIV Switch to the 10dB/division position.
 - d. Set the CHANNEL 2 MODE Switch to the OFF position.
 - e. Set the ELECTRICAL LENGTH MODE Switch to the OFF position.
- 4. Set the CRT display on the 8505A as follows:
- a. Press the REF LINE POSN/BEAM CENTER Switch to display the reference line. Rotate the CH1 vernier until the reference line is positioned on the center horizontal graticule.
- 5. Set the Frequency Sweep on the 8505A as follows:
 - a. Set the RANGE MHz Switch to the LIN .5-130 range.
 - b. Set the sweeper MODE Switch to the LIN EXPAND position.
 - c. Set the sweeper WIDTH Switch to the START/STOP 1 position.
- d. Rotate the START FREQUENCY controls until the START FREQUENCY display reads .022.
- e. Rotate the STOP FREQUENCY controls until the STOP FREQUENCY display reads 130.0.
- 6. Calibrate the 8505A as follows:
 - a. Connect a shorting connector to Port 1 of the 8503A.
 - b. Rotate the OUTPUT Vernier counterclockwise until the OVERLOAD light turns off.
- c. Set the MARKERS Switch to position 1. Rotate the MARKERS 1 vernier to set the measurement marker to 100MHz.
- d. Press the CHANNEL 1 MKR button. Press and hold the the ZRO button until the iterative zero process is complete and the trace moves to the reference line. This establishes the reference at 0dB.

- 7. Remove any external wiring from the rear of the 44472A. Remove the shorting connector from Port 1 of the 8503A.
- 8. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
- 9. Connect the 50 Ohm termination to the 44472A's channel 00 connector.
- 10. Using the 3488A's front panel, close channel 00 as follows:
 - a. Press the LOCAL key.
- b. Press the CLOSE key followed by X00 (where X is the slot occupied by the 44472A and 00 is the channel to be closed).
 - c. Press the EXEC key.
- 11. Press the MKR button to display the marker displacement (in dB) from the reference line. This is the return loss for the channel under test.
- 12. Use the following equation and the return loss measured in step 11 to calculate the VSWR for the channel under test.

$$p = 10^{D}$$
 where $D = \frac{\text{Return Loss (in dB)}}{20}$

$$VSWR = \frac{1 + p}{1 - p}$$

The VSWR should be < 1.12 at 100MHz.

- 13. Repeat steps 9 through 12 for channels 01, 02, and 03.
- 14. Connect the 44472A's COM 1 connector to Port 1 of the 8503A. Repeat steps 9 through 12 for channels 10, 11, 12, and 13.

NOTE

The above test checks VSWR at 100MHz. VSWR can be tested at other frequencies by inserting those frequencies into steps 5a and 6c.

10-13 Corrective Action

A VSWR failure is most likely caused by a higher than normal series resistance in the failed channel. Relay contact(s) and BNC connectors are the probable suspects. If a VSWR failure is encountered, use Figure 10-11 (44472A schematic) to determine the component designator of the failing component and Table 10-2 to determine the HP part number of the component. Contact an HP Sales and Service Office for part ordering information.

NOTE

Connect the 8505A and the 8303A together as shown in Figure 10-6.

- 1. SET UP SEQUENCE: Set the S-PARAMETER SELECT Switch on the 8503A to the REVERSE position.
- 2. Set the signal levels on the 8505A as follows:
 - a. Set the INPUT LEVEL dBm MAX Switch to the -10 position.
 - b. Set the OUTPUT LEVEL dBm Switch to the +10 position.
 - c. Set the OUTPUT LEVEL dBm Vernier to the 0 position.
- 3. Select the measurement on the 8505A as follows:
 - a. Set the CHANNEL 1 INPUT Switch to the A/R position.
 - b. Set the CHANNEL 1 MODE Switch to the MAG position.
 - c. Set the CHANNEL 1 SCALE/DIV Switch to the 20dB/division position.
 - d. Set the CHANNEL 2 MODE Switch to the OFF position.
 - e. Set the ELECTRICAL LENGTH MODE Switch to the OFF position.
- 4. Set the CRT display on the 8505A as follows:
- a. Press the REF LINE POSN/BEAM CENTER Switch to display the reference line. Rotate the CH1 vernier until the reference line is positioned on the center horizontal graticule.
- 5. Set the Frequency Sweep on the 8505A as follows:
 - a. Set the RANGE MHz Switch to the LIN .5-130 range.
 - b. Set the sweeper MODE Switch to the LIN EXPAND position.
 - c. Set the sweeper WIDTH Switch to the START/STOP 1 position.
- d. Rotate the START FREQUENCY controls until the START FREQUENCY display reads .022.
- e. Rotate the STOP FREQUENCY controls until the STOP FREQUENCY display reads 130.0.
- 6. Remove any external wiring from the 44472A.
- 7. CHANNEL TO CHANNEL CROSSTALK TEST: Using the 3488A's front panel keys, establish the card monitor mode and a scan list as follows:

- a. Press the LOCAL key.
- b. Press the CARD MONITOR key followed by the numeral corresponding the slot occupied by the 44472A.
 - c. Press the EXECUTE key.
- d. Press the SCAN LIST key followed by X00-X13 (where X is the slot occupied by the 44472A and 00 through 13 are the channels to be scanned).
 - e. Press the EXECUTE key.
- 8. Press the STEP key.
- 9. Calibrate the 8505A as follows:
- a. Connect a 50 Ohm matched termination to the closed channel appearing in the 3488A's display (channel 00 to start).
 - b. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
 - c. Rotate the OUTPUT Vernier counterclockwise until the OVERLOAD light turns off.
- d. Set the MARKERS Switch to position 1. Rotate the MARKERS 1 vernier to set the measurement marker to 100MHz.
- e. Press the CHANNEL 1 MKR button. Press and hold the ZRO button until the iterative zero process is complete and the trace moves to the reference line. This establishes the reference at 0dB.
- 10. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
- 11. Connect one of the open channels in multiplexer group 0 to Port 2 of the 8503A.
- 12. Press the MKR button to display the marker displacement (in dB) from the reference line. This is the channel to channel crosstalk between the closed channel and the open channel under test. The crosstalk should be < -85dB.
- 13. Repeat steps 11 and 12 for the remaining open channels in group 0.
- 14. Repeat steps 8 through 13 until all channels in the group 0 multiplexer have been stepped through and tested.
- 15. Connect the 44472A's COM 1 connector to Port 1 of the 8503A.
- 16. Press the STEP key.
- 17. Calibrate the 8505A as follows:
- a. Connect a 50 Ohm matched termination to the closed channel appearing in the 3488A's display (channel 10 to start).

- b. Connect the 44472A's COM 1 connector to Port 1 of the 8503A.
- c. Rotate the OUTPUT Vernier counterclockwise until the OVERLOAD light turns off.
- d. Set the MARKERS Switch to position 1. Rotate the MARKERS 1 vernier to set the measurement marker to 100MHz.
- e. Press the CHANNEL 1 MKR button. Press and hold the ZRO button until the iterative zero process is complete and the trace moves to the reference line. This establishes the reference at 0dB.
- 18. Connect the 44472A's COM 1 connector to Port 1 of the 8503A.
- 19. Connect one of the open channels in multiplexer group 1 to Port 2 of the 8503A.
- 20. Press the MKR button to display the marker displacement (in dB) from the reference line. The marker displacement (channel to channel crosstalk) should be < -85dB.
- 21. Repeat steps 19 and 20 for the remaining open channels in group 1.
- 22. Repeat steps 16 through 21 until all channels in the group 1 multiplexer have been stepped through and tested.
- 23. GROUP TO GROUP CROSSTALK TEST: Using the 3488A's front panel keys, close channels 03 and 10 as follows:
 - a. Press the LOCAL key.
- b. Press the CARD MONITOR key followed by the numeral key corresponding to the slot occupied by the 44472A.
 - c. Press the EXECUTE key.
 - d. Press the CLOSE key followed by X03 (where X is the slot occupied by the 44472A).
 - e. Press the EXECUTE key.
 - f. Press the CLOSE key followed by X10 (where X is the slot occupied by the 44472A).
 - g. Press the EXECUTE key.
- 24. Calibrate the 8508A as follows:
- a. Connect 50 Ohm matched terminations to channels X03 and X10 (these channels should be appearing in the 3488A's display).
 - b. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
 - c. Rotate the OUTPUT vernier counterclockwise until the OVERLOAD light turns off.
- d. Set the MARKERS switch to position 1. Rotate the MARKERS vernier to set the measurement marker to 100 MHz.

- e. Press the CHANNEL 1 MKR button. Press and hold the ZRO button until the iterative process is complete and the trace moves to the reference line. This establishes the reference at 0dB.
- 25. Connect the 44472A's COM 0 connector to Port 1 of the 8503A.
- 26. Connect the 44472A's COM 1 connector to Port 2 of the 8503A.
- 27. Press the MKR button to display the marker displacement (in dB) from the reference line. This is the group to group crosstalk. It should be <-85 dB.

NOTE

The above test checks the crosstalk at 100MHz. Crosstalk can be tested at other frequencies by inserting those frequencies into steps 5a and 9d.

10-15 Corrective Action

A channel to channel or group to group crosstalk failure is caused by electrical leakage between the failed channels. This can be caused by a dirty or damaged 44472A pc board. If a failure is encountered, inspect the 44472A pc board for damage. If damage is found, contact an HP Sales and Service Office for 44472A replacement information. If no damage is found, clean the board thoroughly (see Section 10-2).

10-16 REPLACEABLE PARTS

Table 10-2 lists the mechanical and electrical replaceable parts available for the 44472A. The mechanical parts are keyed to Figure 10-7. This figure also provides assembly and disassembly information. The electrical parts are keyed to the schematic and component locator in Figure 10-11. Table 5-2, in Chapter 5, lists manufacturers code numbers as they apply to the parts lists in Table 10-2.

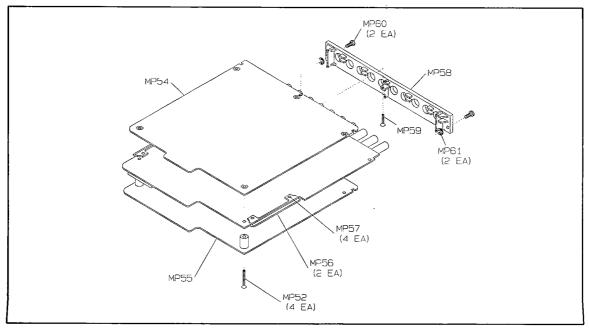


Figure 10-7 44472A Disassembly

Table 10-2 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	44472-66501	2	1	VHF SWITCH ERC: 2605	28480	44472-66501
A1C901 A1C902 A1C903 A1C904 A1C905	0160-3847 0160-3847 0160-3847 0160-3847 0160-0127	9 9 9 9	28	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-0127
A1C906 A1C907 A1C908 A1C909 A1C910	0160-5349 0160-5349 0160-3847 0160-3847 0160-3847	0 0 9 9	2	CAPACITOR-FXD 200PF +-5% 100VDC CER CAPACITOR-FXD 200PF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-5349 0160-5349 0160-3847 0160-3847 0160-3847
A1C911 A1C912 A1C913 A1C914 A1C915	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	99999		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847
A10916 A10917 A10918 A10919 A10920	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	99999		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847
A1C921 A1C922 A1C923 A1C924 A1C925	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	99999		CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847
A10926 A10927 A10928 A10929 A10930	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	99999		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847
A10931	01 60 -3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480	0160-3847
A1CR905 A1CR906 A1CR907 A1CR908 A1CR909	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	33333	8	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	19010050 19010050 19010050 19010050 19010050
A1CR910 A1CR911 A1CR912	1901-0050 1901-0050 1901-0050	333		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480	1901-0050 1901-0050 1901-0050
A1DP901 A1DP902	1906-0229 1906-0229	8	2	DIODE-ARRAY 50V 400MA DIODE-ARRAY 50V 400MA	01295 01295	TID133 TID133
A1J901 A1J902 A1J903 A1J904 A1J905	1250-1846 1250-1846 1250-1846 1250-1846 1250-1846	66666	10	CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM	28488 28480 28480 28480 28480	1250-1846 1250-1846 1250-1846 1250-1846 1250-1846
A1J906 A1J907 A1J908 A1J909 A1J910	1250-1846 1250-1846 1250-1846 1250-1846 1250-1846	66666		CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM	28480 28480 28480 28480 28480	1250-1846 1250-1846 1250-1846 1250-1846 1250-1846
A1K901 A1K902 A1K903 A1K904 A1K905	0490-1414 0490-1414 0490-1336 0490-1336 0490-1414	1 1 6 1	6	RLY-S2M-L2-5VH10 RLY-S2M-L2-5VH10 RELAY-S2EB-L2-5V RELAY-S2EB-L2-5V RLY-S2M-L2-5VH10	28480 28480 28480 28480 28480 29480	0490-1414 0490-1414 0490-1336 0490-1336 0490-1414
A1K906 A1K907 A1K908 A1K909 A1K910	0490-1414 0490-1336 0490-1336 0490-1414 0490-1414	1 6 6 1		RLY-52M-L2-5UH10 RELAY-52EB-L2-5U RELAY-52EB-L2-5U RLY-52M-L2-5UH10 RLY-52M-L2-5UH10	28480 28480 28480 28480 28480	0490-1414 0490-1336 0490-1336 0490-1414 0490-1414
A1K911 A1K912 A1K913 A1K914	0490-1336 0490-1336 0490-1414 0490-1414	6 1 1		RELAY-S2EB-L2-5V RELAY-S2EB-L2-5V RLY-52M-L2-5VH10 RLY-52M-L2-5VH10	29480 28480 28480 28480	0490-1336 0490-1336 0490-1414 0490-1414

Table 10-2 Replaceable Parts (Cont'd)

lable 10-2 Replaceable Parts (Cont'd)								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A1P901	5180-6697	9	1	CONN-RT ANG 2X15	28480	1251-8645		
A1Q901 A1Q902 A1Q903 A1Q904 A1Q905	1853-0551 1853-0551 1853-0551 1853-0551 1853-0551	66666	8	XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237	28480 28480 28480 28480 28480	1853-0551 1853-0551 1853-0551 1853-0551 1853-0551		
A1Q906 A1Q907 A1Q908	1853-0551 1853-0551 1853-0551	6 6	:	XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237	28480 28480 28480	1853-0551 1853-0551 1853-0551		
A1R901 A1R902 A1R903 A1R904 A1R905	0693-2725 0683-2725 0683-2725 0683-1035 0683-1035	8 8 1 1	8	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB1035 CB1035		
A1R908 A1R909 A1R912 A1R913 A1R914	0683-1035 0683-1035 0683-2725 0683-2725 0683-2725	1 1 8 8		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1035 CB1035 CB2725 CB2725 CB2725 CB2725		
A1R915 A1R916 A1R917 A1R918 A1R919	0683-2725 0683-2725 0683-1035 0683-1065 0683-1065	8 1 7 7	5	REGISTOR 2.7K 5%, 25W FC TC=-400/+700 RESISTOR 2.7K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10M 5%, 25W CC TC=-900/+1100 RESISTOR 10M 5%, 25W CC TC=-900/+1100	01121 01121 01121 01121 01121	CB2725 CB2725 CB1035 CB1065 CB1065		
A1U901 A1U902 A1U903 A1U904 A1U905	1820-2537 1820-2537 1820-2216 1858-0047 1820-2216	33555	5 20	IC DRVR CMOS LINE DRVR OCTL IC DRVR CMOS LINE DRVR OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL	27014 27014 27014 27014 13606 27014	MM74C244N MM74C244N MM74C374N ULN-2003A MM74C374N		
A1U986 A1U987	1858-0047 1820-1216	53	1	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC DCDR TTL LS 3-TO-8-LINE 3-INP	13606 01295	ULN-2003A SN74L5138N		
MP52 MP54 MP55 MP56 MP57	0515-0843 44472-00601 44472-00602 5041-5213 1480-0625	2 5 6 0 4	4 1 1 2 4	SCREW M2.5X20 LK SHIELD-VHF CKT SHIELD-VHF COMP GLIDE PC BOARD PIN-GRV 3/32X1/4	28480 28480 28480 28480 28480	0515-0843 44472-00601 44472-00602 5041-5213 1480-0625		
MP58 MP59 MP60 MP61	44472-40201 0515-0403 5180-8269 0510-0043	5 0 9 4	1 1 2 2	PANEL-REAR VHF SCREW M2.5X8 LK SCREW, CAPTIVE RING, RETAINER 3.58	28480 28480 28480 28480 28480	44472-40201 0515-0403 5957-5138 0510-0043		

10-17 44472A THEORY OF OPERATION

The 44472A VHF Card consists of an input buffer and latch, relay drive circuits, an address decoder, and a card-type buffer.

10-18 Input Buffer And Latch

The input buffer (U902 in Figure 10-11) provides isolation between the 44472A and the main-frame's data bus. An input buffer is present on each type of plug-in card and prevents excessive loading of the data bus by the plug-in cards.

The input latch (U903 and U905 in Figure 10-11) holds the output of the input buffer for application to the relay drive circuitry.

10-19 Relay Drive Operation

A simplified schematic diagram of one relay drive circuit is shown in Figure 10-8. When instructions are received over the data bus to set a relay (close a channel), a logic high level is applied to the base of Q2 and the input of U2 causing their outputs to go low. A logic low level is applied to the base of Q1 causing its output to go high. CR2 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to close the relay contacts. Once closed, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contact in the closed state.

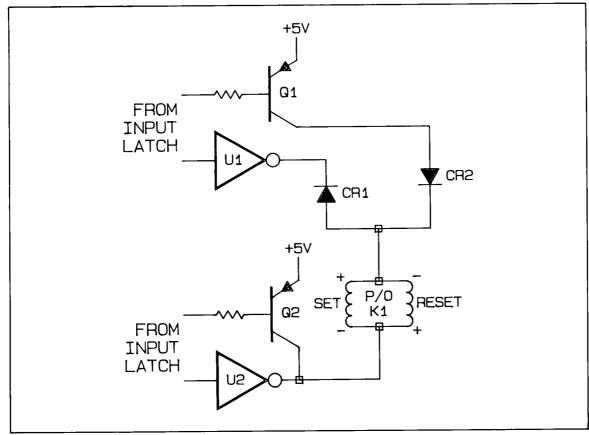


Figure 10-8 One Relay Drive Circuit

When instructions are received over the data bus to reset a relay (open a channel), a logic low level is applied to the base of Q2 and the input of U2 causing their outputs to go high. A logic high level is applied to the input of U1 causing its output to go low. CR1 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to open the relay contacts. Once opened, the drive current is removed from the relay coil and the permanent magnetic field of the armature latches the contacts in the opened state.

10-20 Card-Type Buffer

The card-type buffer (U901 in Figure 10-11) indicates to the mainframe that a 44472A is in the particular card slot queried. The card type is determined by the wiring configuration of four of the input lines to the card-type buffer. By connecting one input to +5Vdc and three inputs to ground, a 4-bit code (0010) is created that is recognized by the mainframe as the unique identifier for the 44472A card.

10-21 Address Decoder

The address decoder (U907 in Figure 10-11) is enabled when the \overline{CS} signal from the main-frame goes low. Once enabled, the address decoder is responsible for enabling the various IC's on the board in response to the instructions it receives via the R/\overline{W} , A0 and A1 signals from the mainframe. Figures 10-9 and 10-10 show the timing relationships between these control lines for both read and write operations.

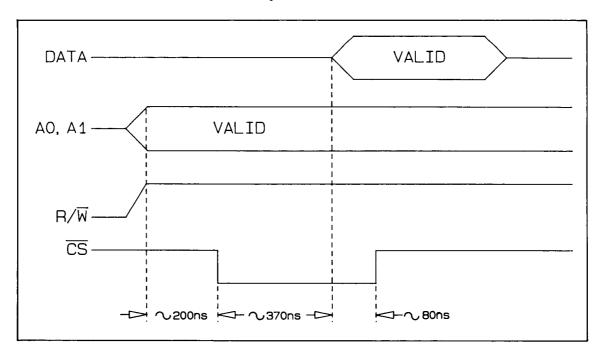


Figure 10-9 Control Line Timing (Read)

10-22 44472A TROUBLESHOOTING

10-23 Introduction

If the Performance Tests (Section 10-3) or Operational Verification tests (Chapter 4) have

indicated that a particular relay is failing, that relay is probably at fault. A failure of the relay contact resistance test indicates a bad relay.

If more than one relay failure is indicated, the associated drivers should be suspected. Using Figure 10-11 (44472A Schematic) the problem may be isolated to a few components from the symptoms. The relays on the 44472A circuit board are arranged into four rows and four columns. To close a relay, both a row driver and a column driver must be active. Failures in the drivers, then, will exhibit symptoms that are common to a row or a column. For example; group 0 relays are common to columns 0 and 2. Group 1 relays are common to columns 1 and 3. Relays K913 and K914 are common to row 0. Note that not all relays need to change state to accomplish a channel to common connection.

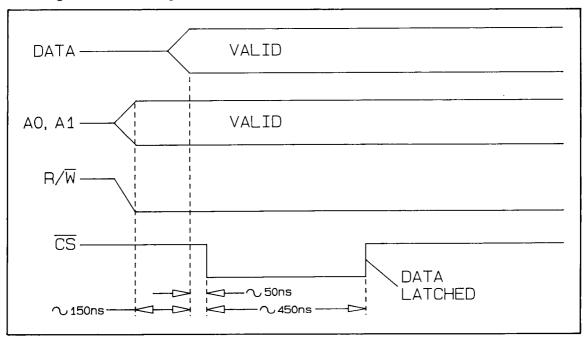


Figure 10-10 Control Line Timing (Write)

10-24 Equipment Required

Signature Multimeter HP 5005A or equivalent

Service Extender Cable 5061-1174 Service Extender Board 5061-1173

10-25 Initial Checks

The initial checks of a suspected plug-in card will require that the plug-in card shields be removed. Removal of the four screws in the plug-in shield allows both shields to be removed from the plug-in printed circuit board.

Once the shields have been removed, the card to be tested should be installed in slot 1 of the mainframe. There are two ways to do this. The first method uses the Service Extender Board (5061-1173) and the Service Extender Cable (5061-1174). With these two service tools the card may be electrically installed in the card slot but be physically located on the test bench.

If the service extender tools are not available, the card may be installed in slot 1 and the 3488A mainframe top cover removed. This will allow access to the non-component side of the plug-in card for servicing. 3488A top cover removal is described in Chapter 5.

Be sure that all other plug-in cards have been removed from the mainframe.

1. Apply power and measure the +5 Vdc on the plug-in board. There are two supplies to this board, both the supplies (and the grounds) are common on the backplane board. Connect the ground lead of the voltmeter to pin 10 of U901. Measure the voltage at pin 20 of U901. The voltage should be +5 Vdc ± 0.5 Vdc. Measure the voltage at the emitter of any of the discrete transistors on the board (i.e., Q906). The transistors are mounted with the emitter lead in a square pad on the board. The voltage should be +5 Vdc ± 0.5 Vdc.

If the voltages are correct, proceed to Step 2. If either or both of the voltages are incorrect, troubleshoot the +5 Vdc supply in the mainframe (it is possible that the plug-in card is loading the supply).

2. Observe the front panel symptoms to determine if the problem can be isolated to a few components. The Operational Verification tests is Chapter 4 may be used to identify a relay contact or closure problem.

If a single channel is at fault, troubleshoot the relays in that channel to determine if they will change state. Use the front panel keys to change the state of the relays (described in Chapter 3) and an ohmmeter to determine if the relay actually changed state. If a single relay is failing to change state, the relay is probably at fault. If more than one relay is failing, the drivers should be suspected. Use the 44472A schematic (Figure 10-11) to determine if If the problem cannot be isolated easily, proceed to Step 3.

3. Check the mainframe and plug-in card data bus for activity. The data probe of the HP 5005A may be used to indicate activity on the data bus. A blinking probe light indicates state changes. Check the data bus at U902 pins 2, 4, 6, 8, 11, 13, 15 and 17. The plug-in card must be installed in slot 1 and power applied to the mainframe. No special test set-ups should be installed.

All eight data lines should show activity.

If activity is found, proceed to Step 4. If one or more of the lines are stuck, troubleshoot the backplane data bus or the inputs to buffers U901 and U902 on the plug-in card.

4. Check the outputs of U902 at pins 3, 5, 7, 9, 12, 14, 16 and 18 for activity. All eight pins should show activity.

If activity is found, proceed to Step 5. If no activity is found on one or more lines, troubleshoot U902, U905 or U903.

- 5. Check the backplane card select and decoding lines for activity. Check U907 pins 1, 2,
- 3, and 4 for activity. All lines should show activity.

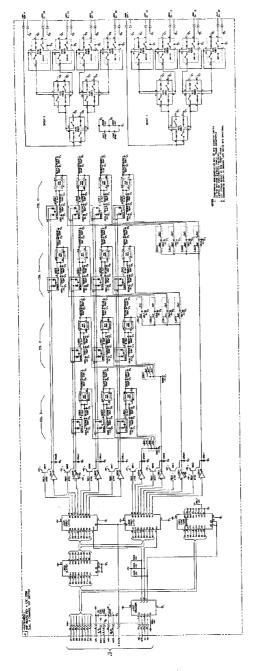
If activity is found, proceed to Step 6. If no activity is found, troubleshoot the backplane or the inputs to U907 on the plug-in card.

6. If the problem has not been isolated, signature analysis procedures may be used to test the buffers, drivers, and relay coils. The procedure begins in Section 10-26.

10-26 Buffer, Driver, And Relay Signature Analysis

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

The HP 5005A has been recommended for this signature analysis test because it incorporates adjustable data thresholds. This feature allows signatures to be checked at the relay coils. If a different signature analyzer is being used, the signatures may only be checked up to the drivers.


Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 10-25 should be performed prior to this signature analysis procedure. Section 10-25 also describes the use of the service extender card and service extender cable.

- 1. Signature Analyzer set-up. Polarity: START _/, STOP and CLOCK _. On the controller printed circuit board (A40), connect START/ST/SP to SA2, STOP/QUAL to SA2, CLOCK to SA3, Ground to SA4.
- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. If using the HP 5005A signature analyzer, set the data probe threshold to 2.80 H and 2.00 L.
- 4. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 2 and press execute.
- 5. The signature analyzer should now be gating. The test selected cycles all data lines in a fixed pattern. This pattern will produce one of two signatures (depending upon inversion) that may be traced from the relay coils to the backplane data bus. These signature are: 36U6 and 6HPH.
- 6. The signatures for the inputs and outputs on the 44472A are given in Table 10-3.

Table 10-3 Buffer, Driver, And Relay Signatures (Test 2)

1 NA 20 + 5 Vdc		US	902			US	903			US	905	
2 36U6					•					•		signature
3 36U6 18 36U6 3 36U6 18 36U6 4 36U6 4 36U6 17 36U6 6 36U6 16 36U6 5 6HPH 16 6HPH 5 36U6 16 36U6 16 36U6 6 36U6 15 36U6 6 6HPH 15 6HPH 6 36U6 15 36U6 8 36U6 13 36U6 9 6HPH 12 6HPH 9 36U6 12 36U6 10 NA 11 NA 11 NA 10 NA 11 NA 11 NA 10 NA 11 NA												
4 36U6 17 36U6 4 36U6 17 36U6 5 36U6 15 36U6 15 36U6 16 36U6 16 36U6 15 36U6 16 36U6 16 36U6 15 36U6 16 36U6 15 36U6 16 36U6 15 36U6 16 36U6 17 36U6 18 36U6 17 36U6 14 36U6 17 36U6 14 36U6 17 36U6 18 36U6 18 36U6 18 36U6 18 36U6 18 36U6 18 36U6 19 36U6 12 36U6 19 36U6 12 36U6 10 NA 11 NA 10 NA								•				
S 36U6												
6 36U6 15 36U6 6 6 6HPH 15 6HPH 6 36U6 15 36U6 8 36U6 13 36U6 9 36U6 12 36U6 9 6HPH 12 6HPH 9 36U6 12 36U6 10 NA 11 36U6 10 NA 11 NA 16 NA 1 NA 16 NA 1 NA 16 NA 1 NA 1												
7 36U6 14 36U6 7 36U6 14 36U6 8 36U6 7 36U6 14 36U6 8 36U6 13 36U6 13 36U6 9 6HPH 12 6HPH 9 36U6 12 36U6 10 NA 11 36U6 10 NA 11 NA 10 NA 11 NA 10 NA 11 NA 1												
8 36U6 13 36U6 9 6HPH 12 6HPH 9 36U6 12 36U6 9 10 NA 11 36U6 10 NA 11 NA 10 NA 11 NA U904 U906 10 NA 11 36U6 10 NA 11 NA 10 NA 11 NA U906 10 NA 11 36U6 10 NA 11 NA 10 NA 11 NA U906 10 NA 11 NA 16 NA 1 NA 16 NA 1 NA 16 NA 16 NA 16 NA 16 NA 17 NA 16 NA 18 NA 19 NA			14	36U6	7	36U6	14	36U6	7	36U6	14	36U6
10		36U6	13	36U6	8	36U6	13	36U6	8	36U6	13	36U6
D904 D906		36U6	12	36U6	9	6HPH	12	6HPH	9	36U6	12	36U6
NA	10	NA	11	36U6	10	NA	11	NA	10	NA	11	NA
1 NA 16 NA 1 NA 16 NA 2 36U6 15 6HPH 3 6HPH 3 6HPH 14 36U6 3 NA 13 NA 14 NA 13 NA 15 6HPH 12 36U6 5 36U6 12 6HPH 6 6 6HPH 11 36U6 6 NA 11 NA 13 NA 15 6HPH 10 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc 8 NA 9		U	904			U	906					
2 NA 15 NA 2 36U6 15 6HPH 3 6HPH 14 36U6 3 NA 14 NA 4 36U6 13 6HPH 4 NA 13 NA 5 6HPH 12 36U6 5 36U6 12 6HPH 6 6HPH 11 36U6 6 NA 11 NA 7 6HPH 10 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc 8 NA 9 +5 Vdc K901 * K906 * K911 * pin signature pin signatu					•							
3 6HPH 14 36U6 3 NA 14 NA 4 36U6 13 6HPH 4 NA 13 NA 5 6HPH 12 36U6 5 36U6 12 6HPH 6 6HPH 11 36U6 6 NA 11 NA 7 6HPH 10 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc 8 NA 9 +5 Vdc K901 * K906 * K911 * pin signature pin signa												
4 36U6 13 6HPH 4 NA 13 NA 5 6HPH 12 36U6 5 36U6 12 6HPH 6 6HPH 11 36U6 6 NA 11 NA 7 6HPH 10 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc K901 * K906 * K911 * pin signature pin sig												
5 6HPH 12 36U6 5 36U6 12 6HPH 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6												
6 6HPH 11 36U6 6 NA 11 NA 7 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc 8 NA 9 +5 Vdc												
7 6HPH 10 36U6 7 36U6 10 6HPH 8 NA 9 +5 Vdc 8 NA 9 +5 Vdc K901 * K906 * K906 * K911 * pin signature pin signatur												
8 NA 9 + 5 Vdc 8 NA 9 + 5 Vdc K901 * K901 * K906 * K911 * pin signature pin signatu												
pin signature pin <td></td>												
1,7 36U6 6,12 6HPH 1,7 36U6 6,12 6HPH 1,7 36U6 6,12 6HPH K902 * K907 * K912 * pin signature pin sign		К9	01 *			К9	06 *			К9	11 *	
pin signature pin <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>signatur 6HPH</td>		•									•	signatur 6HPH
1,7 6HPH 6,12 36U6 1,7 6HPH 6,12 36U6 1,7 6HPH 6,12 36U K903 * K908 * K913 * Pin signature p		К9	02 *			К9	07 *			К9	12 *	
pin signature 1,7 6HPH 6,12 36U6 6,12 6HPH 1,7 36U6 6,12 6HPH			•								•	signatur 36U6
1,7 36U6 6,12 6HPH 1,7 36U6 6,12 6HPH 1,7 6HPH 6,12 36U K904 * K914 * pin signature pin		К9	03 *			К9	08 *			К9	13 *	
pin signature pi												signatur 36U6
1,7 6HPH 6,12 36U6 1,7 36U6 6,12 6HPH 1,7 36U6 6,12 6HP		К9	04 *			К9	09 *			К9	14 *	
K905 * K910 *		-				-						signatur 6HPH
		К9	05 *			К9	10 *					
pin signature pin signature pin signature 1,7 6HPH 6,12 36U6 1,7 6HPH 6,12 36U6					•			•				

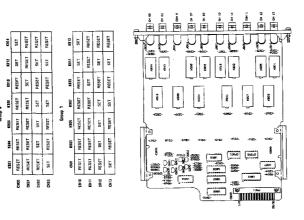


Figure 10-11 44472A Schematic 10-27/10-28

Chapter XI 44473A 4X4 MATRIX SWITCH

CHAPTER XI 44473A 4X4 MATRIX SWITCH

CHAPTER XI

TABLE OF CONTENTS

	Page		Page
11-1	Introduction	11-2	
11-2	Plug-In Card Wiring11-2		(Test 2)11-24
11-3	Plug-In Card Cleaning11-2	11-3a	Sense Circuit Signatures11-25
11-4	Text Fixture	11-3b	Components Used For Signatures11-25
11-5	Performance Tests11-6		-
11-7	44473A DC Isolation Tests11-7		LIST OF ILLUSTRATIONS
11-9	Thermal Offset Test11-13		
11-11	Replaceable Parts11-14	Figure	Page
11-12	44473A Theory Of Operation11-14	11-1	44473A Simplified Schematic11-1
11-13	Input Buffer And Latch11-14	11-2	Plug-In Card Wiring11-3
11-14	Relay Drive and Sense Operation11-15	11-3	44473A Test Fixture11-7
11-15	Card-Type/Sense Buffer11-18	11-4	DC Isolation Test Set-Up11-8
11-16	Address Decoder11-18	11-5	Row Or Column To Chassis DC
11-17	44473A Troubleshooting11-19		Isolation Test11-9
11-18	Introduction	11-6	Row Or Column High To Low Test
11-19	ERR 8: Logic Slot X11-20		Wiring #111-10
11-21	Initial Checks11-21	11-7	Row Or Column High To Low Test
11-22	Buffer, Driver, And Relay Signature		Circuit #111-11
	Analysis11-22	11-8	Row Or Column High To Low Test
11-23	Sense Circuit Troubleshooting11-23		Wiring #211-12
11-24	Sense Circuitry Signature Analysis11-23	11-9	Row Or Column High To Low Test
			Circuit #211-12
		11-10	Open Contact DC Isolation Test11-13
		11-11	44473A Disassembly
	LIST OF TABLES	11-12	One Relay Drive and Sense Circuit11-18
		11-13	Control Line Timing (Read)11-19
Table	Page	11-14	Control Line Timing (Write)11-19
11-1	Replaceable Parts11-16		44473 Schematic11-27

CHAPTER XI 44473A 4X4 MATRIX SWITCH

11-1 INTRODUCTION

This chapter contains installation information, performance testing information, trouble-shooting information and replaceable parts lists for the 44473A 4X4 Matrix Switch.

The 44473A consists of 16 double-pole single-throw (DPST) relays arranged in a 4 channel by 4 channel switching matrix. Each channel has a low line and a high line which are switched in unison. Figure 11-1 shows a simplified schematic of the 44473A.

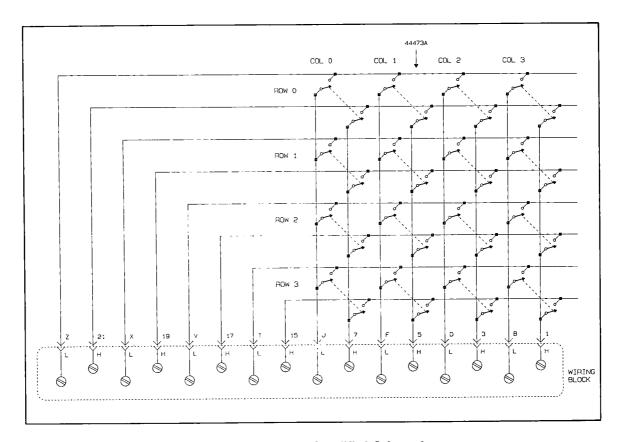


Figure 11-1 44473A Simplified Schematic

WARNING

Hazardous voltage may exist on the wiring and connectors of the 44473A plug-in card. Only service trained personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and or the plug-in cards.

11-2 PLUG-IN CARD WIRING

Figure 11-2 shows the proper wiring procedures for the 44473A.

WARNING

Hazardous voltages may exist on the wiring and connectors of the 3488A's plug-in cards. Only Service Trained Personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and/or the plug-in cards.

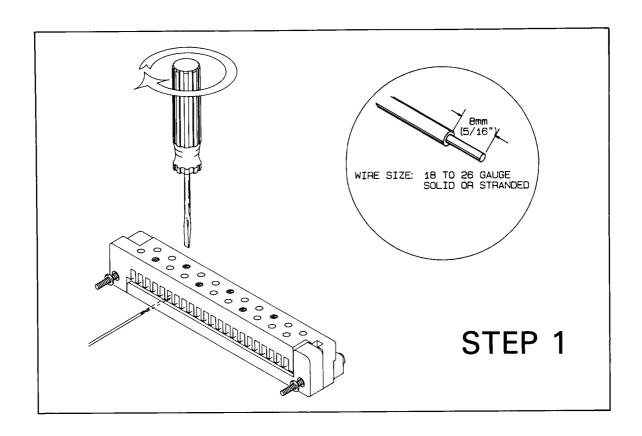
11-3 PLUG-IN CARD CLEANING

Printed circuit board contamination can affect the dc isolation and the high frequency performance of the plug-in cards. This contamination can come from dust accumulation, fingerprints, condensation, and so on. The plug-in card printed circuit boards are to be cleaned as follows:

ECAUTION 3

Use anti-static pc board handling techniques during the following procedure.

- 1. Remove the shields from the plug-in card.
- 2. Use a stiff bristled camel hair brush (do not use a wire brush) soaked in isopropyl alcohol to wash the pc board.



DO NOT immerse the printed circuit board in any type of fluid.

- 3. Use the stiff bristled brush soaked in deionized or distilled water, to remove any residue left by the alcohol.
- 4. Allow the printed circuit board to dry thoroughly.
- 5. Replace the shields.

The maximum terminal-to-terminal or terminal-to-chassis voltage limits for the 44473A are 250Vdc or 250Vac rms (350Vac peak). The maximum current limits per channel are 2Adc or 2Aac rms. The maximum current limits per card are 8Adc or 8Aac rms. The maximum power limits per channel are 60Wdc or 500VAac. The maximum power limits per card are 240Wdc or 2000VAac. Damage to the 44473A and possibly the 3488A will occur if any of the above limits are exceeded.

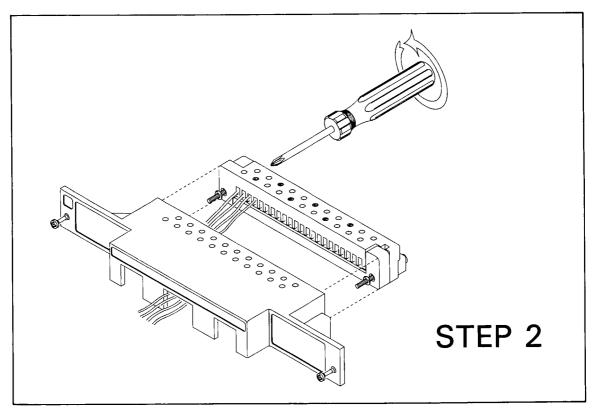


Figure 11-2 Plug-In Card Wiring

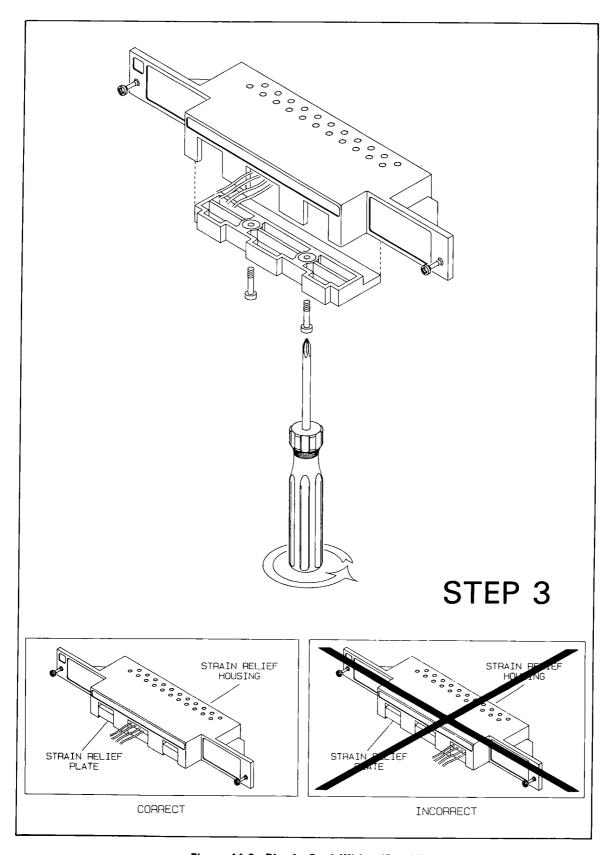
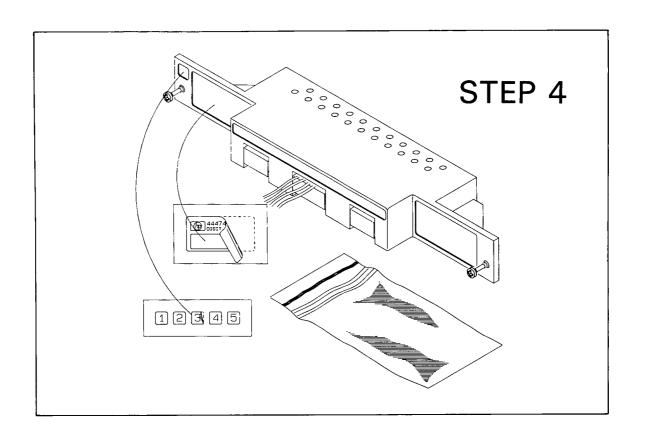



Figure 11-2. Plug-In Card Wiring (Cont'd)

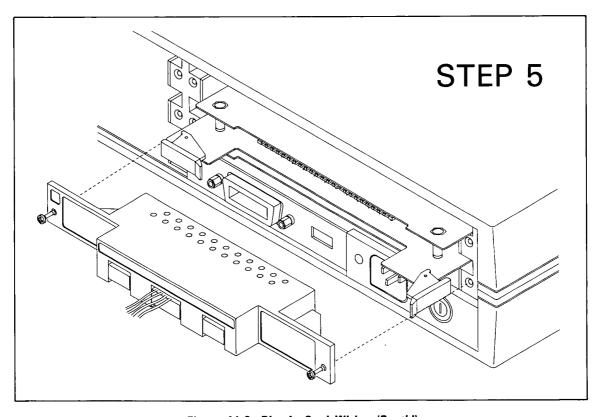


Figure 11-2. Plug-In Card Wiring (Cont'd)

11-4 TEST FIXTURE

A test fixture is required in order to perform the Operation Verification Tests for the 44473A (Chapter 4 of this manual). This fixture simplifies testing by eliminating the need to repeatedly connect and disconnect test leads and by acting as an interface between the 44473A and an ohmmeter.

The test fixture can be either of the following two types:

- a. A test fixture is available from Hewlett-Packard (HP part number 03488-66501). The advantages of this fixture are (1) it requires no assembly and (2) it can be used to test the 44470A, the 44471A, the 44473A and the 44474A plug-in cards without modification.
- b. A test fixture can be constructed by configuring an HP 44483A removable wiring block as shown in Figure 11-3. This particular test fixture can only be used to test the 44473A.

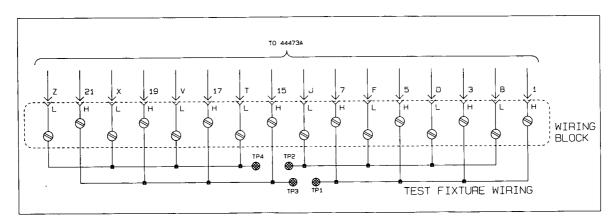
The test fixture consists of (1) a short circuit between all of the low line inputs, (2) a short circuit between all of the low line outputs, (3) a short circuit between all of the high line inputs, and (4) a short circuit between all of the high line outputs. With the test fixture installed, and an ohmmeter connected between the inputs and outputs of either the low lines or high lines, the card is tested by successively closing each relay while checking for the indication of a closure with the ohmmeter.

NOTE

The Performance Test procedures in this chapter are involved and time consuming. Since the most likely parameter to change with time is the series resistance of a channel, and since the series resistance is tested in the Operation Verification procedures (Chapter 4), it is not recommended that the Performance Tests be conducted unless one of the tested specifications is in question.

11-5 PERFORMANCE TESTS

The following Performance Tests check the 44473A's dc isolation and thermal offset specifications. The results of these tests, when coupled with the results of the 44473A Operation Verification Test, will verify whether or not the 44473A is operating within its critical specifications. The 44473A Operation Verification Test is located in Chapter 4 of this manual. Since the 44473A Operation Verification Test assesses the operability of the 44473A, it is important that it be performed prior to performing the Performance Tests.


WARNING

If the 44473A is currently installed into a system, it must be disconnected from the system in order to execute the Performance Tests. This presents two potential safety hazards:

a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).

WARNING

b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected. The user must take the necessary precautions to prevent the above from happening before disconnecting the 44473A.

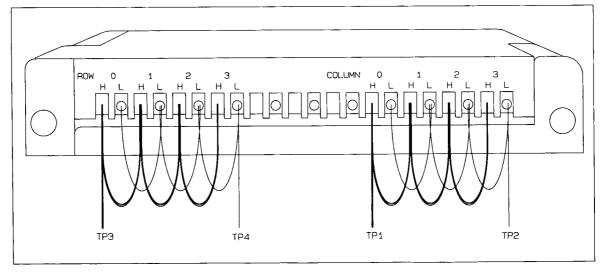


Figure 11-3 44473A Test Fixture

11-6 Required Test Equipment

DC Power Supply – HP 6216B or equivalent. The power supply must be able to deliver a stable +20Vdc at low current levels.

10 megohm resistor.

Digital Multimeter - HP 3478A or equivalent. The multimeter must have the resolution and accuracy to measure a $1\mu V$ differential dc voltage.

11-7 44473A DC Isolation Tests

The following dc isolation tests incorporate a dc power supply, a resistor of known value,

and a dc voltmeter. The first phase of the tests involves precisely setting the dc power supply's output voltage and connecting the resistor and the dc voltmeter in series with the dc power supply. In this configuration, the resistor and the internal resistance of the dc voltmeter form a voltage divider. The voltage drop across the dc voltmeter is measured and, with the value of the resistor and the power supply voltage being known, the internal resistance of the dc voltmeter is calculated.

NOTE

The best test results will be obtained when the value of the known resistor is equal to the internal resistance of the dc voltmeter.

The second phase of the tests consists of (1) placing the appropriate channel of the 44473A in parallel with the dc voltmeter, (2) measuring the voltage drop across the dc voltmeter/channel combination, and (3) calculating the channel's dc isolation.

- 1. SET-UP SEQUENCE: Set the digital multimeter to measure dc voltage. Connect the multimeter to the dc power supply. Set the dc power supply to deliver $\pm .01$ Vdc as measured on the multimeter. This voltage will be referred to as V1 in the following steps.
- 2. Use the multimeter to measure the exact resistance of the 10 megohm resistor. This resistance will be referred to as R1.
- 3. Connect the test equipment as shown in Figure 11-4.

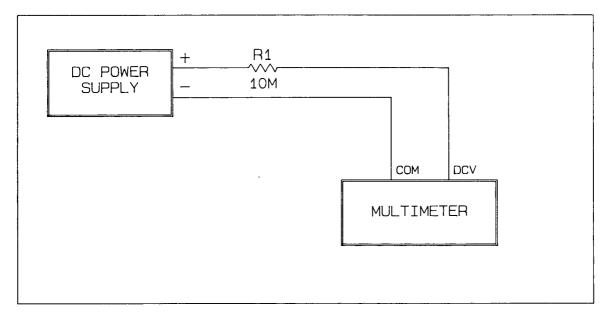


Figure 11-4 DC Isolation Test Set-Up

- 4. Set the multimeter to the 300Vdc range. Record the exact dc voltage reading on the multimeter. This voltage will be referred to as V2 in the following steps.
- 5. Calculate the internal resistance of the multimeter (Rm) using the following equation:

$$Rm = R1 \bullet V2/(V1 - V2)$$

In most cases, the internal resistance of the multimeter is dependent upon the range setting. For this reason, do not change the multimeter's range setting in the following steps.

- 6. ROW OR COLUMN TO CHASSIS TEST: Use the 3488A front panel to open all channels as follows:
 - a. Press the LOCAL key.
- b. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44473A.
 - c. Press the EXECUTE key.
- 7. Connect the 3488A backpanel ground terminal (chassis ground) and the low line of the channel under test (row 0 to start) into the test circuit as shown in Figure 11-5.
- 8. Record the multimeter's dc voltage reading. This reading will be referred to as V3.
- 9. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V3 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V3) - R1 \bullet V3}$$

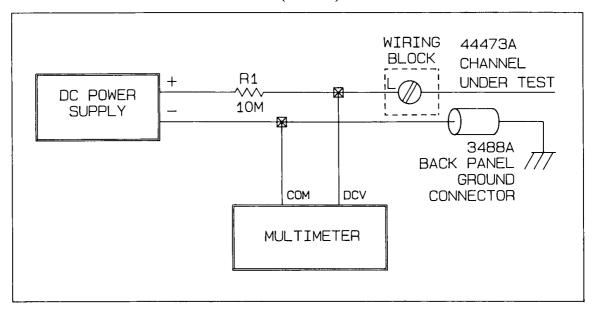


Figure 11-5 Row Or Column To Chassis DC Isolation Test

The row or column to chassis dc isolation should be greater than 500 megohms.

- 10. Repeat steps 7 through 9 for rows 1 through 3 and columns 0 through 3.
- 11. Connect the 3488A backpanel ground terminal (chassis ground) and the high line of the channel under test (row 0 to start) into the test circuit as was done in step 7. Repeat steps 8 and 9 for the high lines of rows 0 through 3 and columns 0 through 3.

- 12. ROW OR COLUMN HIGH TO LOW DC ISOLATION TEST: Use the 3488A front panel keys to open all channels as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44473A.
 - b. Press the EXECUTE key.
- 13. Configure a 44483A wiring block so that the high lines of all the rows and columns are shorted together as shown in Figure 11-6.

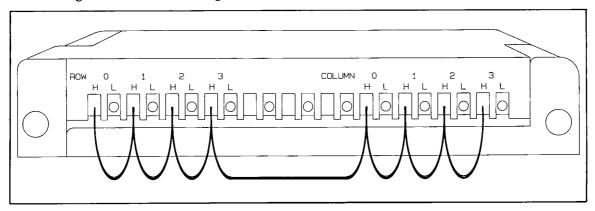


Figure 11-6 Row Or Column High To Low Test Wiring #1

- 14. Connect the shorted lines and the low line of the channel under test (row 0 to start) into the test circuit as shown in Figure 11-7.
- 15. Record the multimeter's dc voltage reading for the channel under test. This reading will be referred to as V4.
- 16. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V4 \bullet R1 \bullet Rm}{Rm \bullet (V1 - V4) - R1 \bullet V4}$$

The row or column high to low dc isolation should be greater than 100 megohms.

- 17. Repeat steps 14 through 16 for the low lines of rows 1 through 3 and columns 0 through 3.
- 18. Configure a 44483A wiring block so that the low lines of all the rows and columns are shorted together as shown in Figure 11-8.
- 19. Connect the shorted lines and the high line of the channel under test (row 0 to start) into the test circuit as shown in Figure 11-9.
- 20. Record the multimeter's dc voltage reading for the channel under test. This reading will be referred to as V5.
- 21. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V5 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V5) - R1 \cdot V5}$$

The row or column high to low dc isolation should be greater than 100 megohms.

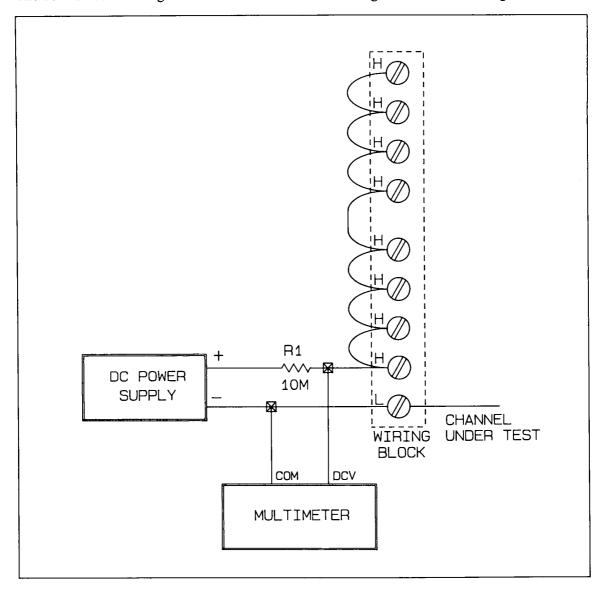


Figure 11-7 Row Or Column High To Low Test Circuit #1

- 22. Repeat steps 19 through 21 for the high lines of rows 1 through 3 and columns 0 through 3.
- 23. OPEN CONTACT DC ISOLATION TEST: Use the 3488A front panel keys to open all channels as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44473A.
 - b. Press the EXECUTE key.

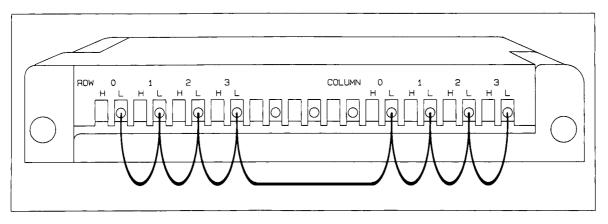


Figure 11-8 Row Or Column High To Low Test Wiring #2

- 24. Connect the low lines of the channels under test (row 0 and row 1 to start) into the test circuit as shown in Figure 11-10.
- 25. Record the multimeter's dc voltage reading for the channels under test. This reading will be referred to as V6.

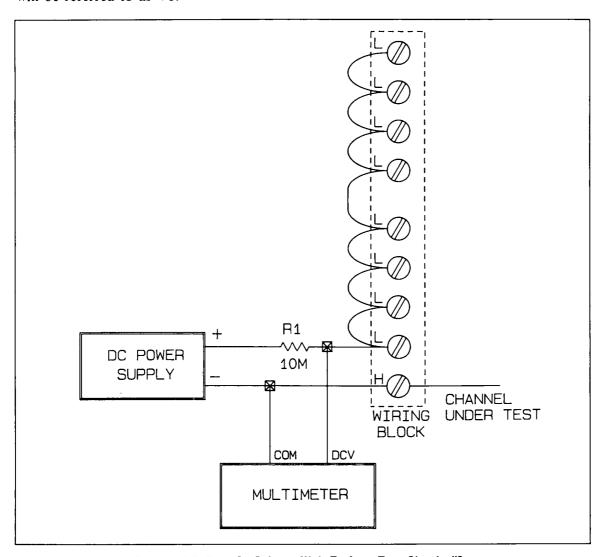


Figure 11-9 Row Or Column High To Low Test Circuit #2

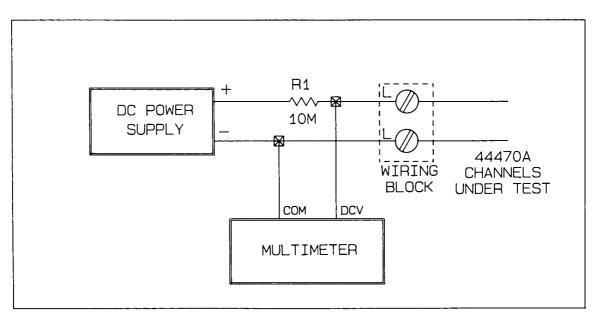


Figure 11-10 Open Contact DC Isolation Test

26. Calculate the dc isolation (Rc) using the following equation:

$$Rc = \frac{V6 \cdot R1 \cdot Rm}{Rm \cdot (V1 - V6) - R1 \cdot V6}$$

The open contact dc isolation should be greater than 1 gigohm.

- 27. Repeat steps 24 through 26 for the low lines of rows 1 and 2, rows 2 and 3, columns 0 and 1, columns 1 and 2, and columns 2 and 3.
- 28. Repeat steps 24 through 26 for the high lines of rows 0 and 1, rows 1 and 2, rows 2 and 3, columns 0 and 1, columns 1 and 2, and columns 2 and 3.

11-8 Corrective Action

A row or column to chassis de isolation failure (step 9) can be caused by electrical leakage from a relay contact through its drive coil to ground, or by a damaged or dirty pe board. If damage is found, contact an HP Sales and Service Office for 44473A replacement information. If no damage is found, clean the board thoroughly (see Section 11-3).

A row or column high to low dc isolation failure (step 16 or 21) or an open contact dc isolation failure (step 26) is most likely caused by a damaged or dirty 44473A printed circuit board. If damage is found, contact an HP Sales and Service Office for 44473A replacement information. If damage is not found, clean the board thoroughly (see Section 11-3).

11-9 Thermal Offset Test

This is a test of the thermally generated dc voltage present on the 44473A. This test is very sensitive to ambient temperature changes and thermoelectricity generated at the junction of two dissimilar metals. For these reasons, it is important that this test be performed in an environment where the temperature is stable and the test lead connections are kept to a minimum.

- 1. Set the multimeter to its lowest dc voltage range. Connect the two multimeter test leads together and record the reference offset voltage. This voltage will be referred to as V1 in the following steps.
- 2. Set up a scan list and the card monitor mode as follows:
- a. Press the SCAN LIST key followed by X00-X33 (where X is the slot occupied by the 44473A and 00-33 are the relays to be scanned).
 - b. Press the EXECUTE key.
- c. Press the CARD MONITOR key followed by X (where X is the slot occupied by the 44473A).
 - d. Press the EXECUTE key.
- 3. Press the STEP key. Connect the multimeter between the low lines of the channels shown in the 3488A's display (row 0 and column 0 to start).
- 4. Record the dc voltage. This voltage will be referred to as V2. The difference between V1 and V2 must be less than 3μ V for each relay.
- 5. Repeat steps 3 and 4 until all 16 relays have been tested.
- 6. Repeat steps 3 and 4 for the high lines of all relays.

11-10 Corrective Action

The most likely cause of a thermal offset failure is the relay. If a failure is found, use Figure 11-15 (44473A schematic) to determine the reference designator of the relay and Table 11-1 to determine the HP part number of the relay. Contact an HP Sales and Service Office for part ordering information.

11-11 REPLACEABLE PARTS

Table 11-1 lists the mechanical and electrical replaceable parts available for the 44473A. The mechanical parts are keyed to Figure 11-11. This figure also provides assembly and disassembly information. The electrical parts are keyed to the schematic and component locator in Figure 11-15. Table 5-2, in Chapter 5, lists manufacturers code numbers as they apply to the parts lists in Table 11-1.

11-12 44473A THEORY OF OPERATION

The 44473A Matrix Card consists of an input buffer and latch, relay drive and sense circuits, an address decoder, and a card-type/sense buffer. Refer to the 44473A schematic in the following discussion (Figure 11-15).

11-13 Input Buffer And Latch

The input buffer (U902 in Figure 11-15) provides isolation between the 44473A and the main-frame's data bus. An input buffer is present on each type of plug-in card an prevents excessive loading of the data bus by the plug-in cards.

The input latch (U903 and U905 in Figure 11-15) holds the output of the input buffer for application to the relay drive and sense circuitry.

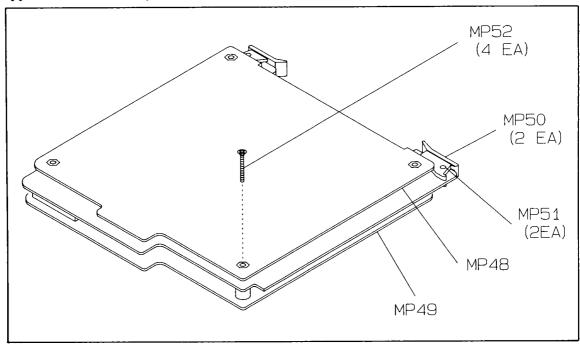


Figure 11-11 44473A Disassembly

11-14 Relay Drive And Sense Operation

A simplified schematic diagram of one relay drive and sense circuit is shown in Figure 11-12. When instructions are received over the data bus to set a relay (close a channel), a logic high level is applied to the base of Q2 and the input of U2 causing their outputs to go low. A logic low level is applied to the base of Q1 causing its output to go high. CR2 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to close the relay contacts. Once closed, the drive current is removed and the permanent magnetic field of the armature latches the contact in the closed state.

When instructions are received over the data bus to reset a relay (open a channel), a logic low level is applied to the base of Q2 and the input of U2 causing their outputs to go high. A logic high level is applied to the input of U1 causing its output to go low. CR1 becomes forward biased allowing current to flow through both the set and reset coils of relay K1. The magnetic field generated around the coils interacts with the permanent magnetic field of the relay armature causing it to open the relay contacts. Once opened, the drive current is removed from the relay and the permanent magnetic field of the armature latches the contacts in the opened state.

Notice that it is necessary to activate one of the upper drive elements (Q1 or U1) and the lower drive elements (Q2 and U2) in order to change a relay's state. If the elements in only the upper or lower drive are activated, no current flows through the relay coils and the relay retains its previous state. This aspect of operation is used by the mainframe in conjunction with the 44473A's relay sense circuitry to verify relay states following relay contact closures, a card reset, and an instrument reset.

When a relay state is being verified following a closure, a low is applied to the base of Q2

Table 11-1 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	44473-66501	3	1	MATRIX CARD ERC: 2712	28480	44473-66501
A1C901 A1C902 A1C903 A1C904 A1C905	0160-3847 0160-3847 0160-3847 0160-3847 0160-0127	9 9 9 9	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-0127
A1CR901 A1CR902 A1CR903 A1CR904 A1CR905	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3 3	48	DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DD-35	9N171 9N171 9N171 9N171 9N171	NDP250 NDP250 NDP250 NDP250 NDP250 NDP250
A1CR906 A1CR907 A1CR908 A1CR909 A1CR910	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	33333		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP250 NDP250 NDP250 NDP250 NDP250 NDP256
A1CR911 A1CR912 A1CR913 A1CR914 A1CR915	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR916 A1CR917 A1CR918 A1CR919 A1CR920	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	333333		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR921 A1CR922 A1CR923 A1CR924 A1CR925	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR926 A1CR927 A1CR928 A1CR929 A1CR930	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR931 A1CR932 A1CR933 A1CR934 A1CR935	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR936 A1CR937 A1CR938 A1CR939 A1CR940	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR941 A1CR942 A1CR943 A1CR944 A1CR945	1901-0620 1901-0620 1901-0620 1901-0620 1901-0620	3 3 3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171 9N171 9N171	NDP 250 NDP 250 NDP 250 NDP 250 NDP 250
A1CR946 A1CR947 A1CR948	1901-0620 1901-0620 1901-0620	3 3 3		DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35 DIODE-SWITCHING 60V 400MA DO-35	9N171 9N171 9N171	NDP 250 NDP 250 NDP 250
A1J901	5180-6638	4	1	CONN-2X11 RT ANG	28480	44473-82102
A1K901 A1K902 A1K903 A1K904 A1K905	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337	7777	16	RELAY-54EB-L2-5V RELAY-54EB-L2-5V RELAY-54EB-L2-5V RELAY-54EB-L2-5V RELAY-54EB-L2-5V	28480 28480 28480 28480 28480	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337
A1K906 A1K907 A1K908 A1K909 A1K910	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337	7 7 7 7 7	:	RELAY-94EB-L2-5V RELAY-94EB-L2-5V RELAY-94EB-L2-5V RELAY-94EB-L2-5V RELAY-94EB-L2-5V	28480 28480 28480 28480 28480	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337
A1K911 A1K912 A1K913 A1K914 A1K915	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337	7 7 7 7		RELAY-S4EB-L2-SV RELAY-S4EB-L2-SV RELAY-S4EB-L2-SV RELAY-S4EB-L2-SV RELAY-S4EB-L2-SV	28480 28480 28480 28480 28480	0490-1337 0490-1337 0490-1337 0490-1337 0490-1337
						İ

Table 11-1 Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1K916	0490-1337	7		RELAY-S4EB-L2-5V	28480	0490-1337
A1P901	5180-6697	9	1	CONN-RT ANG 2X15	28480	1251-8645
A1Q701 A1Q702 A1Q703 A1Q704 A1Q705	1853-0551 1853-0551 1853-0551 1853-0551 1853-0551	6 6 6	8	XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237	28480 28480 28480 28480 28480	1653-0551 1853-0551 1853-0551 1853-0551 1853-0551
A1Q906 A1Q907 A1Q908	1853-0551 1853-0551 1853-0551	6		XSTR-TN4030-237 XSTR-TN4030-237 XSTR-TN4030-237	28488 28480 28480	1853-0551 1853-0551 1853-0551
A1R901 A1R902 A1R903 A1R904 A1R905	0683-2725 0683-2725 0683-2725 0683-1035 0683-1035	8 8 1 1	8	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	91121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB1035 CB1035
A1R906 A1R907 A1R908 A1R909 A1R910	0683-1035 0683-1035 0683-1035 0683-1035 0683-1035	1 1 1 1		RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1035 CB1035 CB1035 CB1035 CB1035
A1R911 A1R912 A1R913 A1R914 A1R915	0683-1035 0683-2725 0683-2725 0683-2725 0683-2725	1 8 8 8		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1035 CB2725 CB2725 CB2725 CB2725
A1R916 A1R917 A1R918 A1R919 A1R920	0683-2725 0683-1035 0683-4705 0683-4705 0683-4705	8 1 8 8	4	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB2725 CB1035 CB4705 CB4705 CB4705
A1R921	0683-4705	8		REGISTOR 47 5% .25W FC TC=400/+500	01121	CB4705
A1U901 A1U902 A1U903 A1U904 A1U905	1820-2537 1820-2537 1820-2216 1858-0047 1820-2216	33555	2 2	IC DRVR CHOS LINE DRVR OCTL IC DRVR CHOS LINE DRVR OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL	27014 27014 27014 13606 27014	MM74C244N MM74C244N MM74C374N ULN-2003A MM74C374N
A1U906 A1U907	1858-0047 1820-1216	5	1	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC DCDR TTL L9 3-TO-8-LINE 3-INP	13606 01295	ULN-2003A SN74LS138N
MP48 MP49 MP50 MP51 MP52	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843	8 9 6 4 2	1 1 2 2 4	CARD SHIELD - CKT CARD CHIELD - COMP PC EXTRACTER WHT PIN-GRV 3/32 x 1/4 SCREW M2.5 X 20 LK	28480 28480 28480 28480 28480	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843
	5040-5193 5040-5194	3 4	1 1	STRAIN RELIEF HOUSING STRAIN RELIEF PLATE	28480 28480	5040-5193 5040-5194
				NOTE: HP PRODUCT NUMBER 44483A INCLUDES CONNECTOR TERMINAL BLOCK AND STRAIN RELIEF ASSEMBLY.		

and to the input of U2. This causes a high at the input of inverter U3 causing its output to go low. If the sense switch is in the correct state (closed) a low is applied, through the switch contacts, to the card-type/sense buffer. The controller recognizes this signal as being correct and no error message occurs.

If, following a closure, the sense switch is in the incorrect state (open), the pull-up resistor R1 applies a high to the card-type/sense buffer. The controller recognizes this as an incorrect state and displays ERR:8 LOGIC.

Relay sense operation following a card or instrument reset is similar to that described above with the exception that the controller interprets an open sense switch as the correct state and a closed sense switch as the incorrect state.

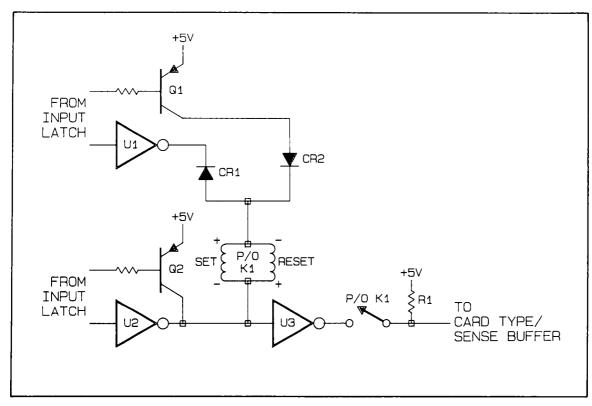


Figure 11-12 One Relay Drive and Sense Circuit

11-15 Card-Type/Sense Buffer

The card-type/sense buffer (U901 in Figure 11-15) indicates to the mainframe that a 44473A is in the particular card slot queried. The card type is determined by the wiring configuration of four of the input lines to the card-type/sense buffer. By connecting two inputs to +5Vdc and two inputs to ground, a 4-bit code (0011) is created that is recognized by the mainframe as the unique identifier for the 44473A card.

The card-type/sense buffer also provides isolation between the outputs of the sense circuits and the mainframe's data bus. In short, this buffer provides the necessary current to drive the data bus.

11-16 Address Decoder

The address decoder (U907 in Figure 11-15) is enabled when the $\overline{\text{CS}}$ signal from the main-

frame goes low. Once enabled, the address decoder is responsible for enabling the various IC's on the board in response to the instructions it receives via the R/\overline{W} , A0 and A1 signals from the controller. Figures 11-13 and 11-14 show the timing relationships between these control lines for both read and write operations.

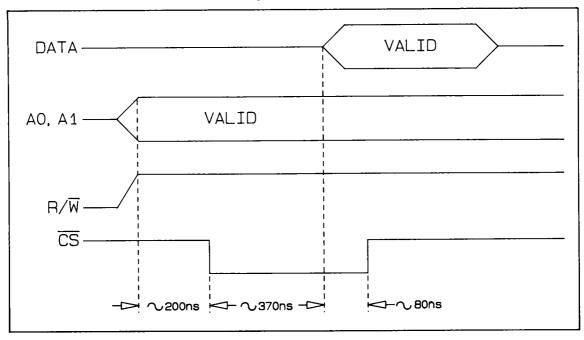


Figure 11-13 Control Line Timing (Read)

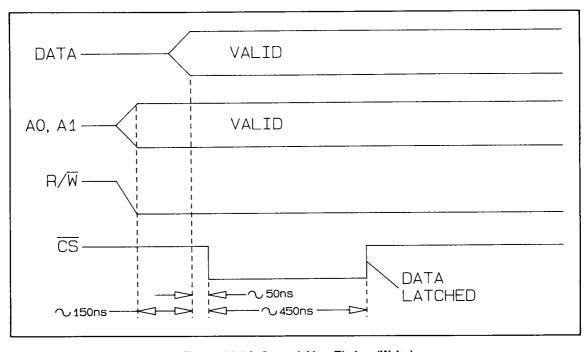


Figure 11-14 Control Line Timing (Write)

11-17 44473A TROUBLESHOOTING

11-18 Introduction

If the Performance Tests (Section 11-5) or Operational Verification tests (Chapter 4) have

indicated that a particular relay is failing, that relay is probably at fault. A failure of the relay contact resistance test indicates a bad relay.

If more than one relay failure is indicated, the associated drivers should be suspected. Using Figure 11-15 (44473A Schematic) the problem can be isolated to a few components from the symptoms. The relays on the 44473A circuit board are schematically arranged into four rows and four columns. To close a relay, both a row driver and a column driver must be active. Failures in the drivers, then, will exhibit symptoms that are common to a row or a column.

For example; suppose all relays in column 0 are failing to close. From the schematic, it is determined that column 0 relays correspond to K901, K905, K909 and K913. Further examination of the schematic reveals that all these relays are in the same column (column 0). The drivers Q903, U904, and U903 would be suspected.

As a another example; suppose all relays in row 2 are failing to close. This row corresponds to relays K909, K910, K911 and K912. These three relays are in a common row. The suspected drivers would be Q906, U906 and U905.

11-19 ERR 8: LOGIC SLOT X

The mainframe error most associated with the plug-in option cards is the ERROR 8: LOGIC error. This error is generated when the controller checks the relays sense circuitry after changing a relay state. The operation of the relay sense circuitry is described in Section 11-14.

The sense circuitry is used by the controller to indicate that a relay did not close when instructed or did not open when instructed. However, the controller does not always check each state. After a power-on reset, a front panel (or remote) reset, or a card reset, the controller checks the sense circuitry for open contacts. If one or more contacts is indicating the closed position, the controller will beep and display ERR 8: LOGIC. After a close command, the controller checks the sense circuitry to determine if the indicated relay is closed. If the sense circuitry indicates the relay is open the controller beeps and displays ERR 8: LOGIC. This action occurs for each relay closure including scan lists and stored set-ups. Following a relay opening, however, the controller does NOT check the sense circuitry for the open. This means that a relay may stick closed and the controller will not flag an error. This occurs for relays opened through the open command, scan lists, and stored set-ups.

In summary, the controller checks for open relays following power-on resets, front panel or remote resets, and card resets. It checks for closed relays following a close command (whether executed by the close command, a scan list or a stored set-up).

When troubleshooting a plug-in card that is generating ERROR: 8 LOGIC it is important to carefully observe the symptoms. If the error is generated when power is applied to the 3488A (controller checking for openings) check the relay contacts to determine if a relay is stuck closed. If no relay is stuck closed, suspect the sense circuitry. If the error is generated following a close command, check the relay contacts to determine if the relay is closed. If the relay is closed, suspect the sense circuitry.

11-20 Equipment Required

Signature Multimeter HP 5005A or equivalent Service Extender Cable 5061-1174 Service Extender Board 5061-1173

11-21 Initial Checks

The initial checks of a suspected plug-in card will require that the plug-in card shields be removed. Removal of the four screws in the plug-in shield allows both shields to be removed from the plug-in printed circuit board.

Once the shields have been removed, the card to be tested should be installed in slot 1 of the mainframe. There are two ways to do this. The first method uses the Service Extender Board (5061-1173) and the Service Extender Cable (5061-1174). With these two service tools the card may be electrically installed in the card slot but be physically located on the test bench.

If the service extender tools are not available, the card may be installed in slot 1 and the 3488A mainframe top cover removed. This will allow access to the non-component side of the plug-in card for servicing. 3488A top cover removal is described in Chapter 5.

Be sure that all other plug-in cards have been removed from the mainframe.

1. Apply power and measure the +5 Vdc on the plug-in board. There are two supplies to this board, both the supplies (and the grounds) are common on the backplane board. Connect the ground lead of the voltmeter to pin 10 of U901. Measure the voltage at pin 20 of U901. The voltage should be +5 Vdc ± 0.5 Vdc. Measure the voltage at the emitter of any of the discrete transistors on the board (i.e., Q906). The transistors are mounted with the emitter lead in a square pad on the board. The voltage should be +5 Vdc ± 0.5 Vdc.

If the voltages are correct, proceed to Step 2. If either or both of the voltages are incorrect, troubleshoot the +5 Vdc supply in the mainframe (it is possible that the plug-in card is loading the supply).

2. Observe the front panel symptoms to determine if the problem can be isolated to a few components. The Operational Verification tests is Chapter 4 may be used to identify a relay contact or closure problem. If a relay is closing (or opening) correctly, as determined by the relay contact tests, but the mainframe displays ERR 8: LOGIC, the relay sense circuitry is at fault. The mainframe will also display ERR 8: LOGIC if one or more relays are not functioning (refer to Section 11-19 for a discussion of the error message).

If a single relay (channel) is at fault, troubleshoot that relay. If one or more relays indicate a fault, the drivers should be suspected (refer to Section 11-18).

If the problem cannot be isolated easily, proceed to Step 3.

3. Check the mainframe and plug-in card data bus for activity. The data probe of the HP 5005A may be used to indicate activity on the data bus. A blinking probe light indicates state changes. Check the data bus at U902 pins 2, 4, 6, 8, 11, 13, 15 and 17. The plug-in card must be installed in slot 1 and power applied to the mainframe. No special test set-ups should be installed.

All eight data lines should show activity.

If activity is found, proceed to Step 4. If one or more of the lines are stuck, troubleshoot the backplane data bus or the inputs to buffers U901 and U902 on the plug-in card.

4. Check the outputs of U902 at pins 3, 5, 7, 9, 12, 14, 16 and 18 for activity. All eight pins should show activity.

If activity is found, proceed to Step 5. If no activity is found on one or more lines, troubleshoot U902, U905 or U903.

- 5. Check the backplane card select and decoding lines for activity. Check U907 pins 1, 2,
- 3, and 4 for activity. All lines should show activity.

If activity is found, proceed to Step 6. If no activity is found, troubleshoot the backplane or the inputs to U907 on the plug-in card.

6. If the problem has not been isolated, signature analysis procedures may be used to test the buffers, drivers, and relay coils. The procedure begins in Section 11-22.

11-22 Buffer, Driver, And Relay Signature Analysis

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

The HP 5005A has been recommended for this signature analysis test because it incorporates adjustable data thresholds. This feature allows signatures to be checked at the relay coils. If a different signature analyzer is being used, the signatures may only be checked up to the drivers.

Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 11-21 should be performed prior to this signature analysis procedure. Section 11-21 also describes the use of the service extender card and service extender cable.

- 1. Signature Analyzer set-up. Polarity: START ______, STOP and CLOCK _____. On the controller printed circuit board (A40), connect START/ST/SP to SA2, STOP/QUAL to SA2, CLOCK to SA3, Ground to SA4.
- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. If using the HP 5005A signature analyzer, set the data probe threshold to 2.80 H and 2.00 L.
- 4. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 2 and press execute.
- 5. The signature analyzer should now be gating. The 3488A display will show RELAY S.A. The test selected cycles all data lines in a fixed pattern. This pattern will produce one of two signatures (depending upon inversion) that may be traced from the relay coils to the backplane data bus. These signature are: 36U6 and 6HPH.
- 6. The signatures for the inputs and outputs on the 44471A are given in Table 11-2.

11-23 Sense Circuit Troubleshooting

Problems with the sense circuitry will typically exhibit ERR 8: LOGIC in the display. A discussion of the error message as it applies to the plug-in card is given is Section 11-19. A theory of operation of the sense circuitry is given in section 11-14.

The drivers for the sense circuit, U904 and U906, are open collector drivers. This means that one of the relays sense contacts must be closed for the driver to operate. The driver may be manually tested by closing an appropriate relay to provide as current path and exercising the input to the driver.

Problems with the sense circuitry can also be isolated with a signature analysis procedure. This procedure begins in Section 11-24.

11-24 Sense Circuitry Signature Analysis

This procedure checks the signatures at the input to the buffer, U901. This buffer has four inputs from the sense circuitry, pins 11, 13, 15, and 17. Each of these inputs represents a composite signal obtained through several different relays and drivers. The signature analysis procedure is designed so that one column of relays is driven at a time (i.e., K901, K905, K909 and K913 are in column 0). Each relay in the column is sensed by a separate line. By observing the signatures obtained at the input to U901 and knowing which column is being driven to obtain the signature, a problem may be isolated to one driver and a set of relays. If all the signatures are incorrect for a given column, the drivers should be suspected. If only one signature is incorrect, the relay should be suspected.

To perform the signature analysis tests the mainframe top cover and the controller shield must be removed. Procedures to remove the cover and shield are located in Chapter 5.

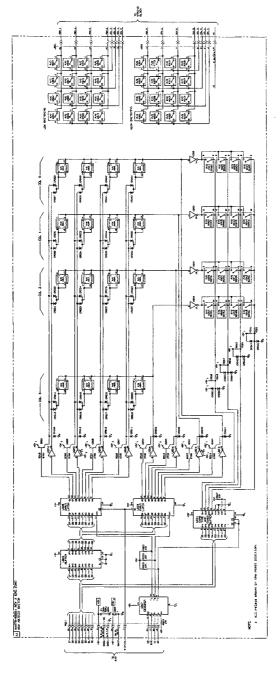
Ensure the controller is set to the normal operating configuration (RP409 installed and all switches on SP401 set open) before performing these troubleshooting steps. All plug-in cards should be removed from the mainframe. The suspected plug-in card must be installed in slot 1.

The initial checks given in section 11-21 should be performed prior to this signature analysis procedure. Section 11-21 also describes the use of the service extender card and service extender cable.

- 1. Signature Analyzer set-up. Polarity: START _/, STOP and CLOCK _. On the controller printed circuit board (A40), connect START/ST/SP to SA2, STOP/QUAL to SA2, CLOCK to SA3, Ground to SA4.
- 2. On the controller printed circuit board (A40), connect a jumper between SA6 (SERV FUNC) and ground (SA4).
- 3. Apply power to the 3488A. Press the TEST key on the front panel. Instead of performing the internal controller self-test, the display will prompt for a number. Enter 3 and press execute.
- 4. The signature analyzer should now be gating. The test selected drives on column of relays at a time. The 3488A display will show COLUMN 0 SA. Pressing the right arrow key on the front panel increments the column number. Pressing the left arrow key decrements the column number.

This test is very noisy as all the relays are being cycled.

5. The signatures for each column and input of U901 are given in Table 11-3a. Table 11-3b identifies the components that are being used to make up the correct signature.


Table 11-2 Buffer, Driver, And Relay Signatures (Test 2)

				+	5 Vdc sig		: 5C1C					
	U	902			U	903		U905				
pin 1 2 3 4 5 6 7 8 9	signatura NA 36U6 36U6 36U6 36U6 36U6 36U6 36U6 36U	pin 20 19 18 17 16 15 14 13	signature +5 Vdc NA 36U6 36U6 36U6 36U6 36U6 36U6 36U6 36U	pin 1 2 3 4 5 6 7 8 9	signature L 6HPH 36U6 36U6 6HPH 6HPH 36U6 36U6 6HPH NA	pin 20 19 18 17 16 15 14 13	signature +5 Vdc 6HPH 36U6 36U6 6HPH 6HPH 36U6 36U6 6HPH NA	pin 1 2 3 4 5 6 7 8 9	signature L 36U6 36U6 36U6 36U6 36U6 36U6 36U6 36	pin 20 19 18 17 16 15 14 13 12	signature + 5 Vdc 36U6 36U6 36U6 36U6 36U6 36U6 36U6 36U	
	U	904			U	906						
pin 1 2 3 4 5 6 7 8	36U6 36U6 36U6 6HPH 36U6 6HPH 6HPH 6HPH NA	pin 16 15 14 13 12 11 10	signature NA NA 36U6 6HPH 36U6 36U6 36U6 + 5 Vdc	pin 1 2 3 4 5 6 7 8	signature NA 36U6 36U6 36U6 36U6 NA 36U6 NA	pin 16 15 14 13 12 11	signature NA 6HPH NA NA 6HPH NA 6HPH + 5 Vdc					
	К9	01 *			К9	07 *		K912 *				
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	ріп 6,12	signature 36U6	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	
	К9	02 *		K908 *				K913 *				
pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	
	К9	03 *		K909 *				K914 *				
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 36U6	pin 6,12	signature 6HPH	
	К9	04 *			К9	10 *		K915 *				
pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 6HPH	pin 6,12	signature 36U6	
	К9	05 *			К9	11 *		K916				
pin 1,7	signature 6HPH	pin 6,12	signature 36U6	pin 1,7	signature 36U6	pin 6,12	signature 6HPH	pin 1,7	signature 36U6	ріп 6,12	signature 6HPH	
	К9	06 *										
pin 1,7	signature 36U6	pin 6,12	signature 6HPH	* t	hese sign	atures	have a data	threshold	of 2.80 H	l and 2	2.0 L.	

Table 11-3a Sense Circuit Signatures

Table 11-3b Components Used For Signatures

	+ 5Vdc się	gnature: 6	592						
	column 0	column 1	column 2	column 3		column 0	column 1	column 2	
U901 pin 17	474A	474A	474A	474A	U901 pin 17	U906	U906	U904	
						K901	K902	K903	
U901 pin 15	2P64	2P64	2P64	2P64	U901 pin 15	U906	U906	U904	
·						K905	K906	K907	
U901 pin 13	PF66	PF66	PF66	PF66	U901 pin 13	U906	U906	U904	
•						K909	K910	K911	
U901 pin 11	003C	003C	003C	003C	U901 pin 11	U906	U906	U904	
r					'	K913	K914	K915	

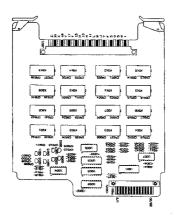


Figure 11-15 44473A Schematic 11-27/11-28

Chapter XII 44474A 16 CHANNEL DIGITAL INPUT/OUTPUT

CHAPTER XII

TABLE OF CONTENTS

	Page	LIST OF TABLES	
12-1	Introduction		
12-2	Plug-In Card Wiring12-1	Table Pag	ıе
12-3	Plug-In Card Cleaning12-1	12-1 Replaceable Parts12-1	
12-4	Text Fixture12-6	•	
12-5	Performance Tests12-6		
12-7	Current Sink And Output Drive Test12-7		
12-9	Replaceable Parts12-12	LIST OF ILLUSTRATIONS	
12-10	44474A Theory Of Operation12-12		
12-11	Bi-directional Data Lines12-12	Figure Pag	zе
12-12	Input Buffer And Latch12-12	12-1 44474A Simplified Schematic12-	
12-13	VMOS FET12-16	12-2 Plug-In Card Wiring12-	
12-14	High Output Driver12-16	12-3 44474A Test Fixture12-	
12-15	Protection Circuitry12-16	12-4 Data Line High Output Test12-	-8
12-16	Comparator	12-5 Data Line Low Output Test12-	.9
12-17	Output Latch And Buffer12-17	12-6 Control Line High Output Test12-1	0
12-18	Handshake Lines12-17	12-7 Control Line Low Output Test12-1	0
12-19	PFLG/External Increment Line12-18	12-8 CHAN CLOSED Line Test12-1	
12-20	Address Decoder12-18	12-9 44474A Disassembly12-1	2
12-21	Card-Type Buffer12-19	12-10 One Data Line12-1	6
12-22	44474A Troubleshooting12-19	12-11 One Handshake Line12-1	7
12-23	Introduction	12-12 External Trigger Circuit And Timing	
12-25	44474A Signature Analysis12-21	Diagram	9
		12-13 Control Line Timing (Read)12-2	0
		12-14 Control Line Timing (Write)12-2	20
		12-15 44474A Schematic (ERC 2429)12-3	
		12-16 44474A Schematic (ERC 2609) 12-4	11

CHAPTER XII 44474A 16 CHANNEL DIGITAL INPUT/OUTPUT

12-1 INTRODUCTION

This chapter contains installation information, performance testing information, troubleshooting procedures and replaceable parts lists for the 44474A 16 Channel Digital Input/Output card.

The 44474A is made up of 16 bi-directional data lines and 4 control lines. A simplified schematic of the 44474A is shown in Figure 12-1.

WARNING

Hazardous voltage may exist on the wiring and connectors of the 44474A plug-in card. Only service trained personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and or the plug-in cards.

12-2 PLUG-IN CARD WIRING

Figure 12-2 shows the proper wiring procedures for the 44474A.

WARNING

Hazardous voltages may exist on the wiring and connectors of the 3488A's plug-in cards. Only Service Trained Personnel with a knowledge of electronic circuitry and an awareness of the hazards involved should install, reconfigure, or make repairs to the 3488A and/or the plug-in cards.

12-3 PLUG-IN CARD CLEANING

Printed circuit board contamination can affect the dc isolation and the high frequency performance of the plug-in cards. This contamination can come from dust accumulation, fingerprints, condensation, and so on. The plug-in card printed circuit boards are to be cleaned as follows:

Use anti-static pc board handling techniques during the following procedure.

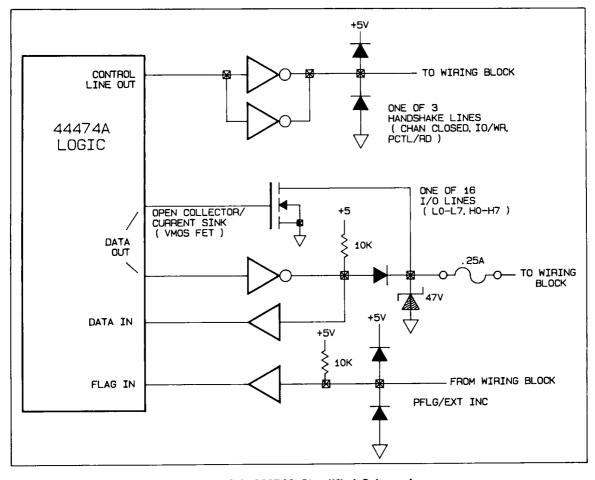
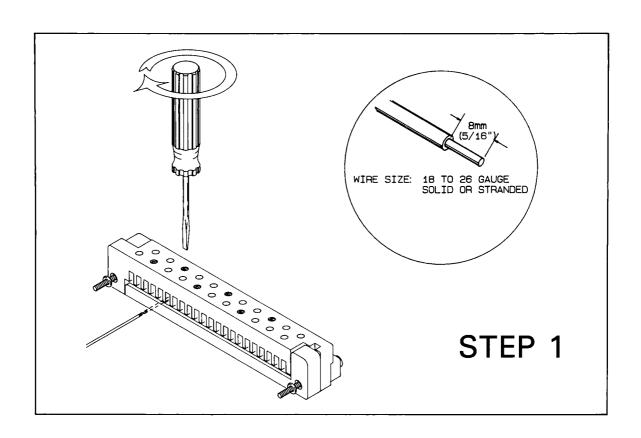


Figure 12-1 44474A Simplified Schematic

- 1. Remove the shields from the plug-in card.
- 2. Use a stiff bristled camel hair brush (do not use a wire brush) soaked in isopropyl alcohol to wash the pc board.


CAUTION

DO NOT immerse the printed circuit board in any type of fluid.

- 3. Use the stiff bristled brush soaked in deionized or distilled water, to remove any residue left by the alcohol.
- 4. Allow the printed circuit board to dry thoroughly.
- 5. Replace the shields.

The maximum allowable data line-to-chassis voltage limit for the 44474A is +30Vdc. The maximum control line-to-chassis voltage limit is +5Vdc. Damage will occur to the 44474A and possibly the 3488A if any of the above limits are exceeded.

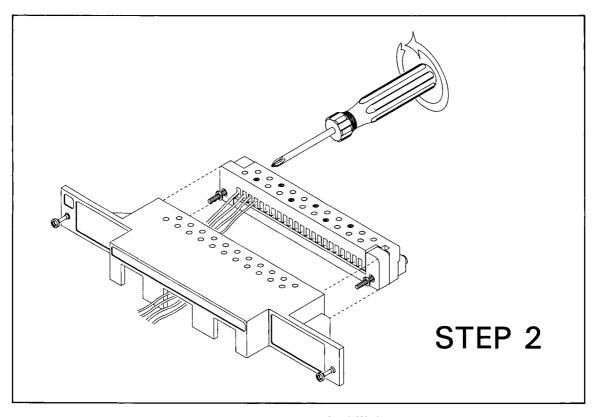


Figure 12-2 Plug-In Card Wiring

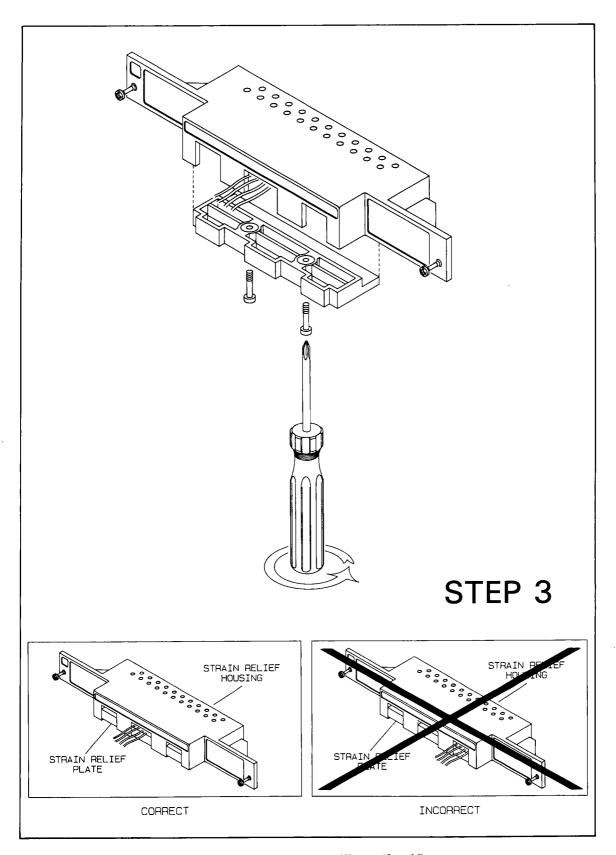
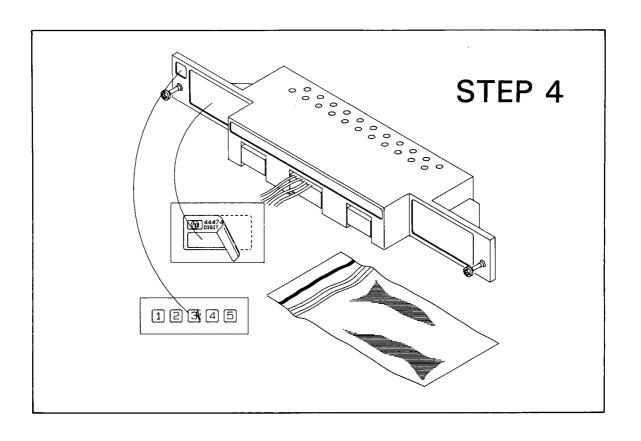



Figure 12-2. Plug-In Card Wiring (Cont'd)

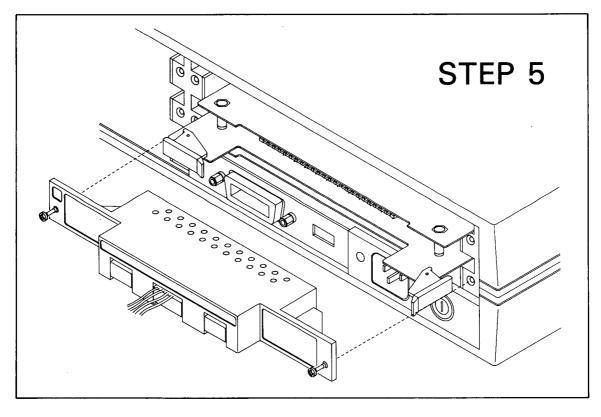


Figure 12-2. Plug-In Card Wiring (Cont'd)

12-4 TEST FIXTURE

A test fixture is required in order to perform the Operation Verification Tests (Chapter 4 of this manual) and troubleshooting procedures for the 44474A. The test fixture can be either of the following two types:

- a. A test fixture is available from Hewlett-Packard (HP part number 03488-66501). The advantages of this fixture are (1) it requires no assembly and (2) it can be used to test the 44470A, the 44471A, the 44473A and the 44474A plug-in cards without modification.
- b. A test fixture can be constructed by configuring an HP 44484A removable wiring block as shown in Figure 12-3. This particular test fixture can only be used to test the 44474A.

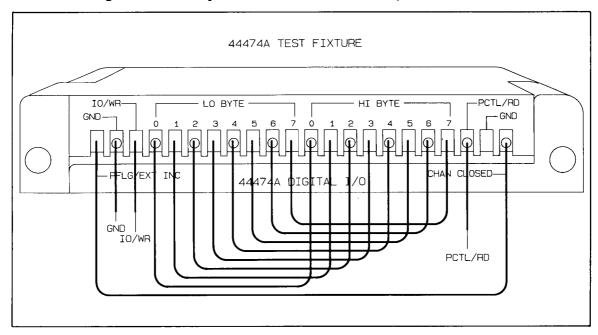


Figure 12-3 44474A Test Fixture

The Operational Verification Test (Chapter 4) for this card consists of (1) a data line input/output test, (2) a Channel Closed/External Increment test, and (3) an IO/WR and PCTL/RD line test. The first test uses the test fixture to connect the eight LO BYTE data lines to the eight HI BYTE data lines. Thus, by writing to one set of data lines and reading the data from the other set, the operation of the data lines and the continuity of the fuses and connectors can be verified. The second test uses the test fixture to connect the CHAN CLOSED line to the PFLG/EXT INC line. This test relys on the self-triggering action of these lines to continuously advance through a scan list — thereby testing the lines. The third test checks the operation of the IO/WR and PCTL/RD control lines by individually connecting each line to a dc voltmeter, using the 3488A front panel keys to change the state of the line, and verifying the state change on the voltmeter.

12-5 PERFORMANCE TESTS

The following Performance Tests check the 44474A's current sinking and output drive specifications. The results of these tests will verify whether or not the 44474A is operating within its critical specifications.

WARNING

If the 44474A is currently installed into a system, it must be disconnected from the system in order to execute the Performance Tests. This presents two potential safety hazards:

- a. It is possible for the user to come in contact with high voltage (if high voltage exists in the system).
- b. Equipment damage may occur should the wrong lines become accidentally connected or disconnected. The user must take the necessary precautions to prevent the above from happening before disconnecting the 44474A.

12-6 Required Test Equipment

DC Power Supply — HP 6216B or equivalent

Digital Multimeter — HP 3478A or equivalent

Oscilloscope — HP 1740A or equivalent

6k ohm resistor

2.5k ohm resistor

300 ohm resistor

100 ohm 3 watt (or greater) resistor

12-7 Current Sink And Output Drive Test

- 1. DATA LINE HIGH OUTPUT TEST: Set the multimeter to measure dc voltage. Use the 3488A's front panel keys to set all data lines to the high state as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44474A.
 - b. Press the EXECUTE key.
 - c. Press the WRITE key followed by X02, -1 (where X is the slot occupied by the 44474A).
 - d. Press the EXECUTE key.
- 2. Connect the multimeter, and the 300 ohm resistor to the LO BYTE 0 line as shown in Figure 12-4. The dc voltage should be ≥ 2.4 Vdc.

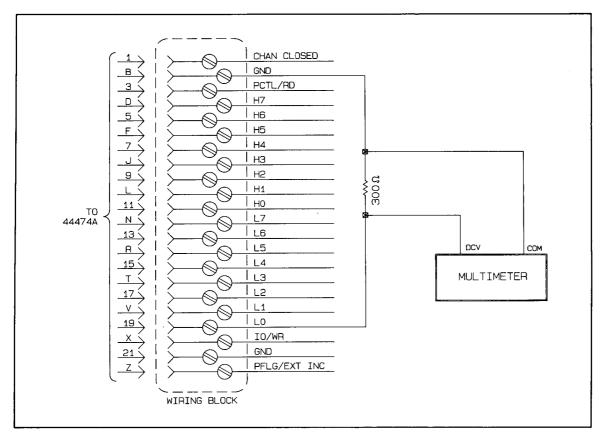


Figure 12-4 Data Line High Output Test

- 3. Repeat step 2 for LO BYTE lines 1 through 7 and HI BYTE lines 0 through 7.
- 4. DATA LINE LOW OUTPUT TEST: Set all data lines to the low state as follows:
 - a. Press the WRITE key followed by X02,0 (where X is the slot occupied by the 44474A).
 - b. Press the EXECUTE key.
- 5. Set the dc power supply to deliver 0Vdc. Connect the dc power supply, the multimeter, and the 100 ohm resistor to line 0 of the LO BYTE as shown in Figure 12-5.
- 6. Increase the power supply's dc voltage output until 4Vdc is measured on the multimeter.
- 7. Measure the dc voltage between the 44474A'S LO BYTE 0 and GND lines. The dc voltage should be ≤ 0.4 Vdc.
- 8. Repeat steps 5 through 7 for LO BYTE lines 1 through 7 and HI BYTE lines 0 through 7.
- 9. Set the dc power supply to deliver 0Vdc. Connect the dc power supply, the multimeter, and the 100 ohm resistor to line 0 of the LO BYTE as was done in step 5 (see Figure 12-5).
- 10. Increase the power supply's dc voltage output until 12.5Vdc is measured on the multimeter.
- 11. Measure the dc voltage between the 44474A's LO BYTE 0 and GND lines. The dc voltage should be less than 1.25Vdc.

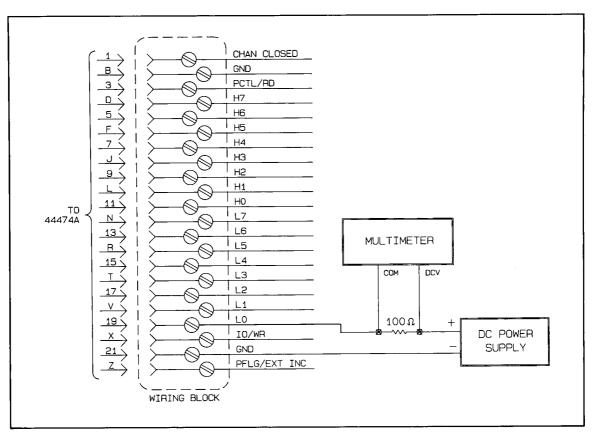


Figure 12-5 Data Line Low Output Test

- 12. Repeat steps 9 through 11 for LO BYTE lines 1 through 7 and HI BYTE lines 0 through 7.
- 13. CONTROL LINE HIGH OUTPUT TEST: Set the control lines to the high state as follows:
- a. Press the CARD RESET key followed by the numeral key corresponding to the slot occupied by the 44474A.
 - b. Press the EXECUTE key.
- 14. Connect the multimeter and the 6k ohm resistor to the PCTL/RD line as shown in Figure 12-6. The dc voltage should be ≥ 2.4 Vdc.
- 15. Repeat step 14 for the CHAN CLOSED and IO/WR lines.
- 16. CONTROL LINES LOW OUTPUT TEST: set the PCTL/RD and the IO/WR control lines to the low state as follows:
 - a. Press the MODE key followed by X,1,20,1 (where X is the slot occupied by the 44474A).
 - b. Press the EXECUTE key.
- 17. Set the dc power supply to deliver 0Vdc. Connect the dc power supply, the multimeter, and the 2.5k ohm resistor to the PCTL/RD line as shown in Figure 12-7.

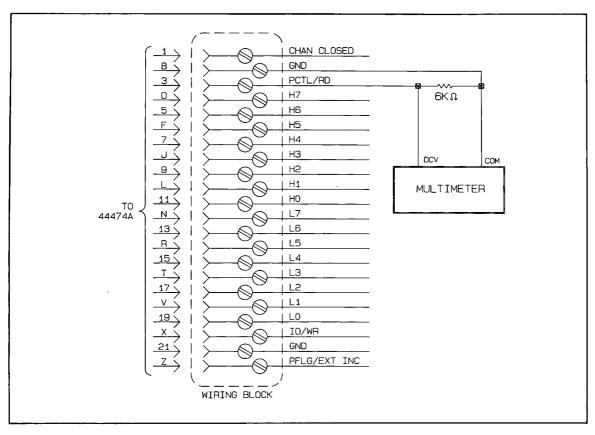


Figure 12-6 Control Line High Output Test

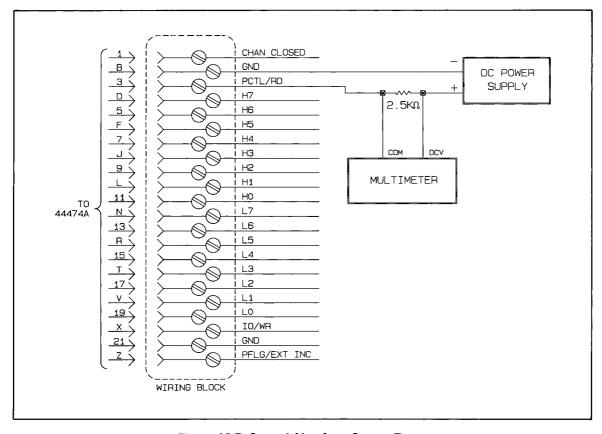


Figure 12-7 Control Line Low Output Test

- 18. Increase the power supply's dc voltage output until 5Vdc is measured on the multimeter.
- 19. Measure the dc voltage between the 44474A's PCTL/RD and GND lines. The dc voltage should be ≤ 0.5 Vdc.
- 20. Repeat steps 17 through 19 for the IO/WR line.
- 21. Establish a scan list as follows:
- a. Press the SCAN LIST key followed by X00-X05 (where X is the slot occupied by the 44474A).
 - b. Press the EXECUTE key.
- 22. Set the dc power supply to deliver 0Vdc. Connect the dc power supply, the multimeter and the 2.5k ohm resistor to the CHAN CLOSED line as shown in Figure 12-8.

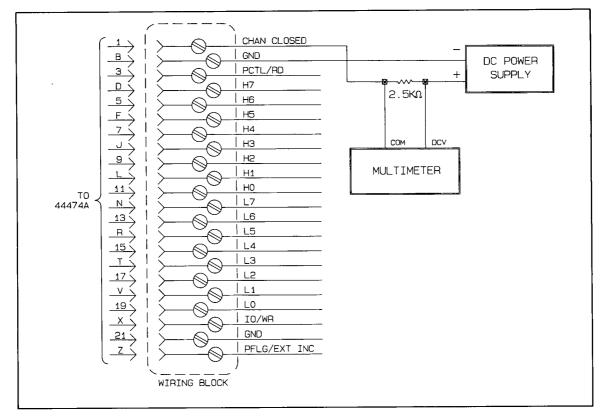


Figure 12-8 CHAN CLOSED Line Test

- 23. Increase the power supply's dc voltage output until 5Vdc is measured on the multimeter.
- 24. Connect the oscilloscope between the 44474A's CHAN CLOSED and GND lines. Successively press the 3488A's STEP key while monitoring the CHAN CLOSED pulse on the oscilloscope. The low level voltage should be ≤ 0.5 Vdc, the width of each pulse should be $\geq 10\mu$ seconds.

12-8 Corrective Action

If any of the current sink or output drive tests fail, troubleshoot the 44474A. Troubleshooting procedures begin in section 12-22.

12-9 REPLACEABLE PARTS

Table 12-1 lists the mechanical and electrical replaceable parts available for the 44474A. The mechanical parts are keyed to Figure 12-9. This figure also provides assembly and disassembly information. The electrical parts are keyed to the schematic and component locator in Figure 12-15. Table 5-2, in Chapter 5, lists the manufacturers code numbers as they apply to the parts list in Table 12-1.

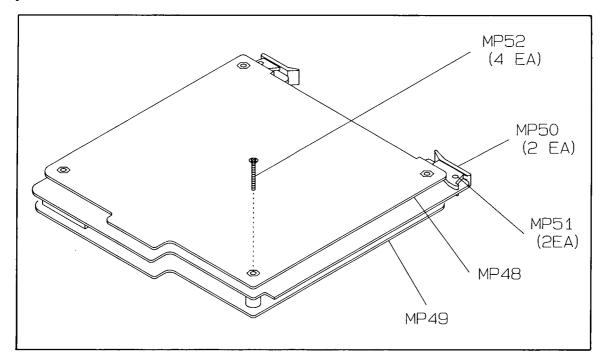


Figure 12-9 44474A Disassembly

12-10 44474A THEORY OF OPERATION

The 44474A is made up of 16 bi-directional data lines, three output only handshake lines, one input only PFLG/External Increment line, an address decoder and a card-type buffer. Refer to the 44474A schematic (Figure 12-15) in the following discussions.

12-11 Bi-directional Data Lines

Figure 12-10 is a simplified schematic diagram depicting one of the 16 data lines. As shown in the simplified schematic, each data line contains a input buffer and latch, a VMOS FET, a high output driver, protection circuitry, a comparator, and an output latch and buffer.

12-12 Input Buffer And Latch

The input buffer provides isolation between the 44474A and the 3488A's data bus. An input buffer is present on each type of option card and prevents excessive loading of the data bus by the option cards.

The input latch holds the output of the input buffer.

Table 12-1 Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	4447466501	4	1	DIGITAL I/O CARD ERC: 2609	28480	44474-66501
A1C901 A1C902 A1C903 A1C904 A1C905	0160-0127 0160-3847 0160-3847 0160-3847 0160-3847	29999	1 B	CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28486 28480 28480 28480 28480	0160-0127 0160-3847 0160-3847 0160-3847 0160-3847
A1C906 A1C907 A1C908 A1C909 A1C910	0160-3847 0160-3847 0160-3847 0160-3847 0160-4808	9 9 9 4	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470FF +-5% 108VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-4808
A1CR901 A1CR902 A1CR903 A1CR904 A1CR905	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	333333333333333333333333333333333333333	24	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR906 A1CR907 A1CR908 A1CR909 A1CR910	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3 3 3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR911 A1CR912 A1CR913 A1CR914 A1CR915	1981-0050 1901-0050 1901-0050 1901-0050 1901-0050	33333		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 203MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR916 A1CR917 A1CR918 A1CR919 A1CR920	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3 3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1 CR921 A1 CR922 A1 CR923 A1 CR924 A1 CR925	1901-0050 1901-0050 1901-0050 1901-0050 1902-0176	3 3 3 6	16	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 47V 5% PD=1W IR=5UA	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A1CR926 A1CR927 A1CR928 A1CR929 A1CR930	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176	6 6 6 6		DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA	28480 28480 28480 28480 28480	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176
A1CR931 A1CR932 A1CR933 A1CR934 A1CR935	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176	66666		DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA	28480 28480 28480 28480 28480	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176
A1CR936 A1CR937 A1CR938 A1CR939 A1CR940	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176	66666		DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA DIODE-ZNR 47V 5% PD=1W IR=5UA	28480 28480 28480 28480 28480	1902-0176 1902-0176 1902-0176 1902-0176 1902-0176
A1F901 A1F902 A1F903 A1F904 A1F905	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669	4 4 4 4	16	FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096	28480 28480 28480 28480 28480	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669
A1F906 A1F907 A1F908 A1F909 A1F910	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669	4 4 4 4		FUSE .25A 125V NTD .28X.076 FUSE .25A 125V NTD .28X.076 FUSE .25A 125V NTD .28X.076 FUSE .25A 125V NTD .28X.076 FUSE .25A 125V NTD .28X.076	28480 28480 28480 28480 28480	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669
A1F911 A1F912 A1F913 A1F914 A1F915	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669	4 4 4 4		FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096 FUSE .25A 125V NTD .28X.096	28480 28480 28480 28480 28480	2110-0669 2110-0669 2110-0669 2110-0669 2110-0669
A1F916	2110-0669	4		FUSE .25A 125V NTD .28X.076	28480	2110-0669
A1 J901	5180-6639	3	1	CONN-2X11 RT ANG	28480	44474-62102
A1P901	5180-6697	9	1	CONN-RT ANG 2X15	28480	1251-8645
	1	Ì]		1	

Table 12-1 Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1Q901 A1Q902 A1Q903 A1Q904 A1Q905	1855-0564 1855-0564 1855-0564 1855-0564 1855-0564	ភេសសសស	16	TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE	17856 17856 17856 17856 17856	UNI 0 KM UNI 0 KM UNI 0 KM UNI 0 KM UNI 0 KM
A1Q906 A1Q907 A1Q908 A1Q909 A1Q910	1855-0564 1855-0564 1855-0564 1855-0564 1855-0564	5 5 5 5 5		TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE	17856 17856 17856 17856 17856	UN10KM UN10KM UN10KM UN10KM UN10KM
A1Q911 A1Q912 A1Q913 A1Q914 A1Q915	1855-0564 1855-0564 1855-0564 1855-0564 1855-0564	១១១១១		TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE TRANSISTOR MOSFET N-CHAN E-MODE	17856 17856 17856 17856 17856	UN1 0 KM UN1 0 KM UN1 0 KM UN1 0 KM UN1 0 KM
A1Q916	1 85 50564	5		TRANSISTOR MOSFET N-CHAN E-MODE	17856	VN1 0KM
A1R901 A1R902 A1R903 A1R904 A1R905	0.583-5105 0.683-5105 0.683-4725 0.683-4725 0.683-4725	4 2 2 2 2	2 16	RESISTOR 51 5% .25W FC TC=-400/+500 RESISTOR 51 5% .25W FC TC=-400/+500 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB5105 CB5105 CB4725 CB4725 CB4725 CB4725
A1R906 A1R907 A1R908 A1R909 A1R910	0683-4725 0683-4725 0683-4725 0683-4725 0683-4725	2222		RESISTOR 4.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB4725 CB4725 CB4725 CB4725 CB4725 CH4725
A1R911 A1R912 A1R913 A1R914 A1R915	0698-3154 0698-4445 0683-4725 0683-4725 0683-4725	9 4 2 2 2	1	RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 5.76K 1% .125W F TC=0+-100 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	24546 24546 01121 01121 01121	C4-1/8-T0-4221-F C4-1/8-T0-5761-F CE4725 CB4725 CB4725
A1R916 A1R917 A1R918 A1R919 A1R920	0683-4725 0683-4725 0683-4725 0683-4725 0683-4725	ខេត្តមក		RESISTOR 4.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB4725 CB4725 CB4725 CB4725 CB4725 CB4725
A1R721 A1R922 A1R923 A1R924 A1R925	0811-1063 0683-2045 0683-2045 0683-2045 0683-2045	. ២៦៦៦១	16	RESISTOR 47 10% 1W PW TC=0+-150 RESISTOR 200K 5% .25W FC TC=-800/+900 RESISTOR 200K 5% .25W FC TC=-800/+900 RESISTOR 200K 5% .25W FC TC=-800/+900 RESISTOR 200K 5% .25W FC TC=-800/+900	28480 01121 01121 01121 01121	08111063 CD2045 CB2045 CB2045 CB2045
A1R926 A1R927 A1R928 A1R929 A1R930	0683-2045 0683-2045 0683-2045 0683-2045 0683-2045	១១១១១ ១		RESISTOR 200K 5% .25W FC TC=-800/+900 RESISTOR 200K 5% .25W FC TC=-800/+900	61121 01121 01121 01121 01121	CB2045 CB2045 CB2045 CB2045 CB2045 CB2045
A1R931 A1R932 A1R933 A1R934 A1R935	0683-2045 0683-2045 0683-2045 0683-2045 0683-2045	១១១១១១		RESISTOR 200K SX .25W FC 1C=-800/+900 RESISTOR 200K 5X .25W FC 1C=-800/+900 RESISTOR 200K 5X .25W FC 1C=-000/+900 RESISTOR 200K 5X .25W FC TC=-800/+900 RESISTOR 200K 5X .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB2045 CB2045 CB2045 CB2045 CB2045
A1R936 A1R937 A1R938 A1R939 A1R940	0683-2045 0683-2045 0811-1063 0811-1063 0811-1063	5 5 8 8		RESISTOR 200K 5%. 25W FC TC≔-800/+900 RESISTOR 200K 5%. 25W FC TC≔-800/+900 RESISTOR 47 10% 1W PW TC≔0+-150 RESISTOR 47 10% 1W PW TC≔0+-150 RESISTOR 47 10% 1W PW TC=0+-150	01121 01121 28480 28480 28480	CB2045 CB2045 0811-1063 0811-1063 0811-1063
A1RP901 A1RP902 A1RP903 A1RP904 A1RP905	1810-0269 1810-0269 1810-0269 1810-0269 1810-0269	3 3 3 3 3	7	NETWORK-RES 9-SIP10.0K OHM X 8 NETWORK-RES 9-SIP10.0K OHM X 8 NETWORK-RES 9-SIP13.0K OHM X 8 NETWORK-RES 9-SIP10.0K OHM X 8 NETWORK-RES 9-SIP10.3K OHM X 8	28480 28480 28480 28480 28480	1810-0269 1810-0269 1810-0269 1810-0269 1810-0269
A1RP906 A1RP907	1810-0269 1810-0269	3		NETWORK-RES 9-SJP10.0K OHM X B NETWORK-RES 9-SJP10.0K OHM X B	2848 0 28 4 80	1810-0269 1810-0269
A1U901 A1U902 A1U903 A1U904 A1U905	1820-3297 1820-2216 1820-2216 1828-2216 1828-3297	4 5 5 4	2 3	IC DRVR CMOS/74HC BUS OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL IC FF CMOS D-TYPE POS-EDGE-TRIG OCTL IC DRVR CMOS/74HC BUS OCTL	28480 27014 27014 27014 28480	1820-3297 MM74C374N MM74C374N MM74C374N MM74C374N 1820-3297
A1U906 A1U907 A1U908 A1U909 A1U913	1820-1199 1820-2538 1820-2538 1820-3082 1826-0138	1 4 4 5 8	1 2 2 4	IC INV TTL LS HEX 1-INP IC DRVR CMOS LINE DRVR OCTL IC DRVR CMOS LINE DRVR OCTL IC-MC74HC374N IC COMPARATOR GP QUAD 14-D1P-P PKG	01295 27014 27014 28480 01295	5N74L504N MM74C240N MM74C240N 182C-3082 LM339N

Table 12-1 Replaceable Parts (Cont'd)

Table 12-1 Keplaceable Parts (Cont d)								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A1U911 A1U912 A1U913 A1U914 A1U915	1826-0138 1820-3082 1826-0138 1826-0138 1820-3456	8 5 8 7	. 1	IC COMPARATOR GP QUAD 14-DIP-P PKG IC-MC74HC374N IC COMPARATOR GP QUAD 14-DIP-P PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC-74HCT244	01295 28486 01295 01295 28480	LM339N 1820-3082 LM339N LM339N 1820-3456		
A1U916 A1U917 A1U918	1820-1212 1820-1216 1820-1198	93	1 1 1	IC FF TTL LS J-K NEG-EDGE-TRIG IC DCDR TTL LS 3-TO-0-LINE 3-INP IC GATE TTL LS NAND QUAD 2-INP	81295 01295 01295	SN74L5112AN SN74L513BN SN74LS03N		
MP48 MP49 MP50 MP51 MP52	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843	8 9 6 4 2	1 1 2 2 4	CARD SHIELD - CKT CARD SHIELD - COMP PC EXTRACTER WHT PIN GRV 3/32 X 1/4 SCREW M2.5 X 20 LK	28480 28480 28480 28480 28480	03488-00602 03488-00603 0403-0464 1480-0625 0515-0843		
	5040-5193 5040-5194	3 4	1 1	STRAIN RELIEF HOUSING STRAIN RELIEF PLATE NOTE: HP PRODUCT NUMBER 44484A INCLUDES CONNECTOR TERMINAL BLOCK AND STRAIN RELIEF ASSEMBLY.	28480 28480	5040-5193 5040-5194		
						·		
			L					

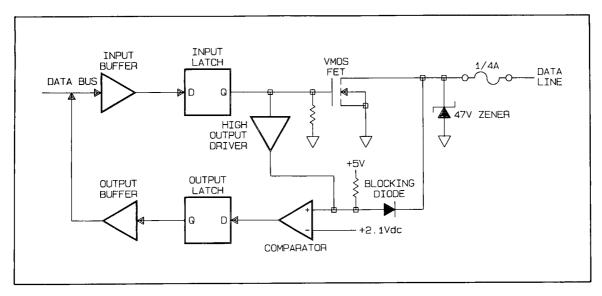


Figure 12-10 One Data Line

12-13 VMOS FET

When a logic high level is applied to the gate of the FET it conducts heavily, creating a low resistance path from the data line to ground. This is the data line low state. When in this state the FET is capable of sinking an externally supplied current of up to 125 mA.

When a logic low level is applied to the gate of the FET the FET presents a high resistance between the data line and ground. This is the passive high state which occurs at instrument turn-on, following a reset, and whenever the data lines are being read.

Notice the resistor connected between the FET's gate and ground. This resistor holds the gate near ground potential when the 3488A is initially turned-on to ensure that the FET is in the passive high state.

12-14 High Output Driver

When a command is issued to set a data line high the FET is in the passive high state (as described in Section 12-13) and the high output driver is enabled. The high output driver provides the output current necessary to maintain a TTL high output level (≥ 2.4 Vdc) under load.

12-15 Protection Circuitry

As shown in Figure 12-10, the protection circuitry consists of a 1/4 amp fuse, a 47 V zener diode, and a blocking diode.

The 1/4 amp fuse protects the 44474A from excessive externally applied current.

The zener diode conducts at any voltage of 47 Vdc or greater which limits the applied voltage to a maximum of 47 Vdc. The zener diode provides protection from external overvoltage situations including static electricity.

The blocking diode reverse biases when the applied voltage exceeds +4.3 Vdc preventing externally supplied current from being injected into the 44474A's and the 3488A's +5 Vdc supply line.

12-16 Comparator

The comparator maintains correct TTL high and low levels by shifting the voltages from the input to compensate for the forward voltage drop of the blocking diode. A reference voltage of +2.1 Vdc is applied to the inverting input of the comparator. When the input voltage is in the range of 0 Vdc to +4.3 Vdc the blocking diode is forward biased and its forward voltage drop is added to the applied voltage. For example, when 0 Vdc is applied to the data line, +0.7 Vdc is present on the non-inverting input of the comparator. Thus, when the input signal level is > +1.4 Vdc, a voltage > +2.1 Vdc is applied to the non-inverting input of the comparator causing its output to go high. When the applied voltage is < 1.4 Vdc, a voltage < 2.1 Vdc is applied to the comparator's non-inverting input causing its output to go low. In other words, an input voltage < 1.4 Vdc is interpreted as a TTL low level and an input > 1.4 Vdc is interpreted as a TTL high level.

The pull-up resistor (connected to the comparator's non-inverting input in Figure 12-10) allows external ground connections and open circuits to be detected. When the data line is grounded, the blocking diode is forward biased applying a +0.7 Vdc level to the comparator—a TTL low. When the data line is allowed to float (ground connection removed) the non-inverting input of the comparator floats to +5 Vdc — a TTL high. This feature can be used, among other things, to check the continuity of wires. With one end of the wire connected to ground and the other to the data line, a TTL low indicates continuity while a TTL high indicates an open circuit.

12-17 Output Latch And Buffer

The output latch holds the output of the comparator.

The output buffer provides isolation between the 44474A and the 3488A's data bus. The output buffer also provides the current necessary to drive the 3488A's data bus.

12-18 Handshake Lines

Figure 12-11 is a simplified schematic diagram depicting one of the three output-only handshake lines. As shown in the simplified schematic, each handshake line contains an input buffer and latch, and a driver. The operation of the input buffer and latch is identical to that discussed in Section 12-12. The handshake driver consists of two inverters wired in parallel. By wiring these inverters in parallel, twice the output current of a single inverter is available.

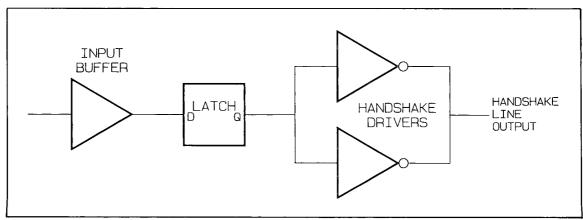


Figure 12-11 One Handshake Line

12-19 PFLG/External Increment Line

The PFLG/External Increment line performs two different functions depending upon the mode specified.

When handshake mode #5 is specified (see DMODE command in Chapter 3) this line becomes a peripheral flag (PFLG) line and is used by the peripheral device to indicate that it is ready to receive data. In this mode, the PFLG line is applied to the data bus through the card-type buffer.

When the external increment/channel closed mode is specified (see DMODE in Chapter 3), this line in conjunction with the external trigger circuitry, interrupts the 3488A controller whenever an external trigger occurs. In addition, the external trigger circuitry signals the controller to display an error message (ERR 4: TRIG) whenever the external trigger signal exceeds the allowable frequency limit.

A simplified schematic and timing diagram of the external trigger circuitry is shown in Figure 12-12. As indicated by the timing diagram, the triggering process starts when the 3488A controller sets the \overline{PR} line to the logic low level. This causes each of the J-K flip-flops to have a high level on its Q output and a low level on its \overline{Q} output. A trigger occurs whenever the external signal on the PFLG/External Increment line goes from a high to a low level. This trigger is applied to the clock input of each J-K flip-flop. When the trigger signal occurs after the preset signal, the B flip-flop has a high level on its J input and a low level on its K input. This causes the Q output of the B flip-flop to remain at the high level. The A flip-flop, however, has a low level on its J input and a high level on its K input. The trigger signal causes the A flip-flop Q output to go from a high to a low level and its \overline{Q} output to go from a low to a high level. The inverter input goes from a low to a high level and its output goes from a high level to a low level. When the inverter's output (the \overline{INT} line) goes from a high to a low level, the 3488A controller is interrupted.

In normal triggering situations, as described above, every external trigger pulse will be preceded by an internal preset pulse. It is possible, however, for a second trigger pulse to occur before the second preset pulse has occurred. In other words the external trigger pulse is occurring too fast. When the second trigger occurs too soon, the A flip-flop has a low level on its J input and a high level on its K input. The A flip-flop's output remains the same causing no high to low transition of the \overline{INT} line and no controller interrupt. At the same time, the B flip-flop has a low level on its J input and a high level on its K input (as a result of the first trigger). The second trigger pulse is applied to the clock input of the B flip-flop causing its Q output to go from a high to a low level. This transition signals the controller, via the card-type buffer, that the trigger is occurring too fast. The controller then displays ERR 4: TRIG.

12-20 Address Decoder

The address decoder (U917 in Figure 12-15) is enabled when the \overline{CS} signal from the 3488A goes low. Once enabled, the address decoder is responsible for enabling the various IC's on the board in response to the instructions it receives via the R/W, A0 and A1 signals from the 3488A. Figures 12-13 and 12-14 show the timing relationships between these control lines for both read and write operations.

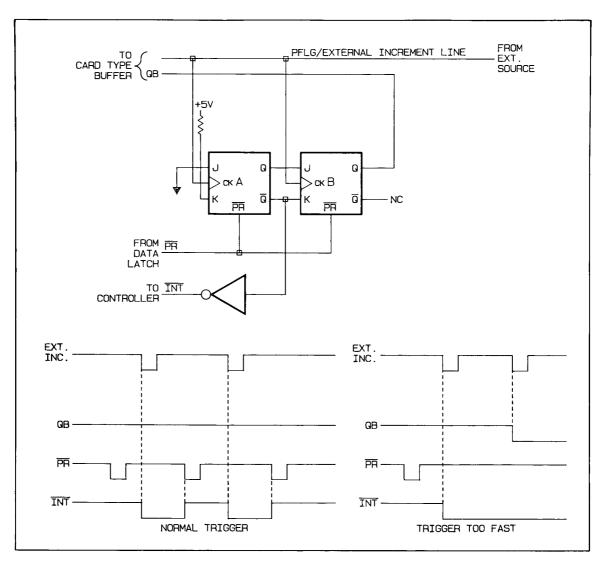


Figure 12-12 External Trigger Circuit And Timing Diagram

12-21 Card-Type Buffer

The primary purpose of the card-type buffer (U915 in Figure 12-15) is to indicate to the 3488A that a Digital I/O Card is in the particular card slot queried. The card type is determined by the wiring configuration of four of the input lines to the card-type buffer. By connecting one of the inputs to +5 Vdc and three inputs to ground, a 4-bit code (0100) is generated that is recognized by the 3488A as the unique identifier for the Digital I/O Card.

A secondary purpose of the card-type buffer is to buffer the PFLG line and the outputs of the external trigger circuitry.

12-22 44474A TROUBLESHOOTING

12-23 Introduction

The 16 input/output lines of the 44474A are divided into two groups of 8 lines each. These two groups are referred to as high byte and low byte. All sixteen input/output lines are individually fused. If only a single line appears to be failing, the fuse would be the most likely

suspect. The 44474A shields must be removed to check the fuses. The fuses are soldered into the board and can be checked with an ohmmeter.

If all the outputs in either the high byte or low byte are failing, the data latches (U904 hi byte or U903 low byte) or output drivers (U908 for the hi byte or U907 for the low byte) should be suspected. If all outputs are failing, the input buffers (U901 and U905) should be suspected.

Failures only in the handshake lines are limited to U906, U902 and U917 and associated circuitry. The handshake lines are not fused.

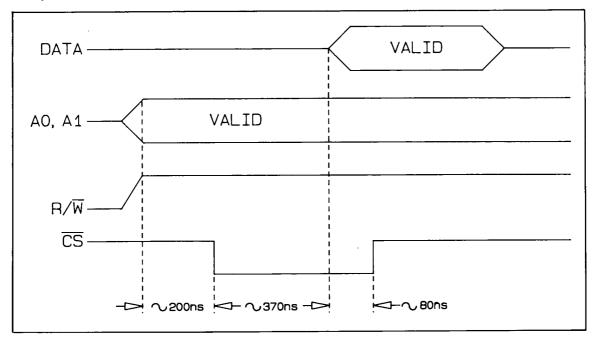


Figure 12-13 Control Line Timing (Read)

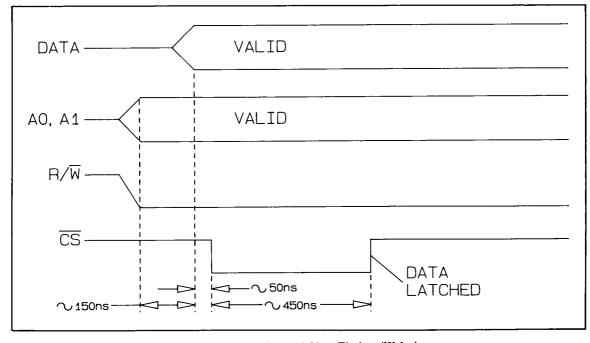


Figure 12-14 Control Line Timing (Write)

If the controller beeps and displays ERR 4: HARDWARE TRIGGER TOO FAST, check the input to the PFLG/EXT INCREMENT line. If the input is correct, the problem is isolated to U916, U918 and U915 and associated circuitry. Note that the output of the external trigger circuitry (INT) is a direct line to the controller. If, when a digital I/O card is installed, the controller seems to be lost, check the status of the INT line. This line can only be controlled by a 44474A card. For normal controller operation this line must be high. For a discussion of the INT line and the external trigger circuitry refer to Section 12-19.

Troubleshooting the 44474A can be accomplished with a signature analysis procedure. This procedure begins in Section 12-25.

12-24 Equipment Required

HP 5005A Signature Multimeter 03488-66501 Test Fixture

12-25 44474A Signature Analysis

The following pages describe the signature analysis procedures. Each page contains the setup procedure, the area of the 44474A being checked, the appropriate signatures and general notes about the test.

The procedure has been designed to be in a step-by-step fashion, or, if the symptoms indicate a particular area of the 44474A, specific signatures can be observed. In each case, the set-up procedure must be followed exactly to assure compatible signatures. If the procedure is used in a step-by-step fashion, the changes in the set-up between each step are highlighted.

Each step of the procedure gives the output signatures (and some control signatures) of a particular section of the 44474A. In the NOTES section of each signature analysis procedures step, a note directs the user to a separate sheet, where the input signatures can be found. Between the output signatures and the input signatures, a failing device can be isolated. In some cases the input signatures are given on a sheet labeled FAILED.

The signature analysis procedures require that the top cover of the mainframe and the controller shield be removed. Procedures to remove the cover and shield are located in Chapter 5.

A special controller firmware routine is used to test the 44474A. The 44474A MUST be installed in slot 1. The special routine is accessed by grounding A40SA6. The signature analyzer timing pod connections are made on the controller (A40) board.

The test fixture (03488-66501) must be installed for the signature analysis tests. This fixture is described in Section 12-4. This fixture connects the high byte data lines to the low byte data lines. Additionally, the fixture connects the CHANNEL CLOSED output to the PFLG/Ext Increment line. This loop must be in place for the signature analysis firmware routine to operate.

Once A40SA6 is grounded and power applied, the special routine is accessed by pressing the front panel TEST key. Instead of performing the internal self-test the display will prompt for a number. The 44474A test is selected by pressing the number 4 and EXECUTE. The display will show "DIG CARD S.A." while this test is running.

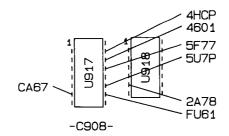
In the following procedures, signatures are taken with the data probe threshold set to normal TTL levels. Two steps, 6 and 7, require that the data probe low threshold be set 1.5 V. This is due to the voltage drop across the blocking diode (see Section 12-16). It is important to return the data probe threshold level to TTL levels before proceeding to Step 8. If the signature analyzer used does not allow the data thresholds to be changed, Steps 6 and 7 must be skipped.

STEP 1

CHECKING: 44474A

ADDRESS DECODING (U917, U918)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP _ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC

+5 Vdc: 4094

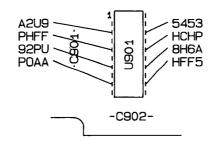
NOTES

- 1. If signatures are correct, proceed to Step 2.
- 2. If signatures are incorrect, troubleshoot U917 and 918. Additional troubleshooting information is given in FAILED ADDRESS DECODING.

CHECKING: 44474A

BACKPLANE BUFFER (U901)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP \
 CLOCK \
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 3.
- 2. If signatures are incorrect, troubleshoot U901. Additional troubleshooting information is given in FAILED BACKPLANE BUFFER.

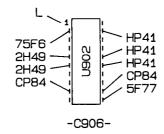
CHECKING: 44474A

HANDSHAKE LATCH (U902)

44474-66501 ERC: 2429

SET-UP

ON CONTROLLER (A40)


- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP _ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS

TEST 4 EXEC

12. JUMPER U918 PIN 4 TO GROUND

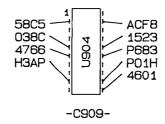
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 4.
- 2. If signatures are incorrect, troubleshoot U902. Input signatures to U902 are the same as the output signatures of U901 given in Step 2.
- 3. "L" indicates node is low.

CHECKING: 44474A

HI BYTE INPUT LATCH (U904)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START __ STOP __ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

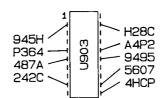
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 5.
- 2. If signatures are incorrect, troubleshoot U904. Input signatures to U904 are the same as the output signatures of U901 given in Step 2.

CHECKING: 44474A

LOW BYTE INPUT LATCH (U903)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP \
 CLOCK \
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

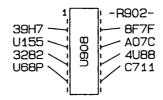
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 6.
- 2. If signatures are incorrect, troubleshoot U903. Input signatures to U903 are the same as the output signatures of U901 given in Step 2.

CHECKING: 44474A

HI BYTE OUTPUT DRIVER (U908)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START __ STOP __ CLOCK
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND
- 13. FOR STEPS 6 AND 7 ONLY, SET DATA PROBE LOW THRESHOLD TO 1.5 V.

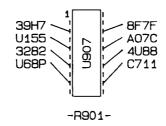
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 7.
- 2. If signatures are incorrect, troubleshoot U908. Input signatures to U908 are the same as the output signatures of U904 given in Step 4.

CHECKING: 44474A

LOW BYTE OUTPUT DRIVER (U907)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START __ STOP __ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND
- 13. FOR STEPS 6 AND 7 ONLY, SET DATA PROBE LOW THRESHOLD TO 1.5 V.

+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 8.
- 2. If signatures are incorrect, troubleshoot U907. Input signatures to U907 are the same as the output signatures of U903 given in Step 5.

CHECKING: 44474A

DATA LINE SIGNATURES

44474-66501 ERC: 2429

SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP \
 CLOCK \
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS
 - TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

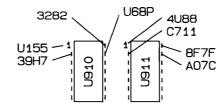
+5 Vdc: 4094

- 1. Signatures are checked at the fuses.
- 2. Input signatures to the MOS FETS (Q901...Q916) are the same as the output signatures given in Steps 4 and 5.
- 3. If signatures are correct, proceed to Step 9.
- 4. If signatures are incorrect, troubleshoot the output circuitry. Note that the Hi-byte and Low-byte are connected together. An incorrect signature on a given line may be caused by either the Hi-byte or Low-byte output circuitry.

CHECKING: 44474A

HI BYTE COMPARATORS (U910, U911)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP __ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS
- TEST 4 EXEC 12. JUMPER U918 PIN 4 TO GROUND

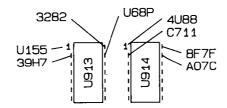
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 10.
- 2. If signatures are incorrect, troubleshoot U910 and U911. Input signatures to U910 and U911 are the same as the output signatures given in Steps 6 and 7. Note that input signatures require a data probe low level of 1.5 V.

CHECKING: 44474A

LO BYTE COMPARATORS (U913, U914)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP ____ CLOCK ___
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

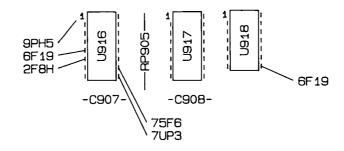
+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 11.
- 2. If signatures are incorrect, troubleshoot U913 and U914. Input signatures to U913 and U914 are the same as the output signatures given in Steps 6 and 7. Note that input signatures require a data probe low level of 1.5 V.

CHECKING: 44474A

EXT TRG & PFLG (U916, U918)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START _/ STOP \
 CLOCK \
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS
 - TEST 4 EXEC
- 12. JUMPER U918 PIN 4 TO GROUND

+5 Vdc: 4094

- 1. Signature at pin 1 of U916 is an input from PFLG (U906). If signature is incorrect, troubleshoot U906. U906 signatures are given in Step 12.
- 2. Signature on pin 6 of U916 is an input to U918.
- 3. Signature at pin 10 of U916 is an input. If signature is incorrect, troubleshoot U902. U902 signatures are given in Step 3.
- 4. If signatures are correct, perform Step 12.
- 5. If signatures are incorrect, troubleshoot U916 and U918.

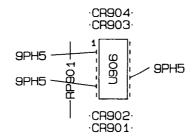
CHECKING: 44474A

HANDSHAKE DRIVERS (U906)

44474-66501 ERC: 2429

SET-UP

ON CONTROLLER (A40)


- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START __ STOP _ CLOCK
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS

TEST 4 EXEC

12. JUMPER U918 PIN 4 TO GROUND

+5 Vdc: 4094

- 1. If signatures are correct, proceed to Step 13.
- 2. If signatures are incorrect, troubleshoot U906. Input signatures to U906 are the same as the output signatures of U902 pins 15, 16 and 19 given in Step 3.

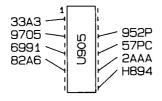
CHECKING: 44474A

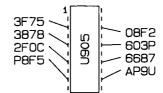
BACKPLANE OUTPUT BUFFER (U905)

44474-66501 ERC: 2429

SET-UP

ON CONTROLLER (A40)


- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4


- 8. POLARITY: START __ STOP __ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS
 - TEST 4 EXEC
- 12. REMOVE JUMPER U918 PIN 4 TO GROUND

+5 Vdc: 4094

INPUT SIGNATURES

OUTPUT SIGNATURES

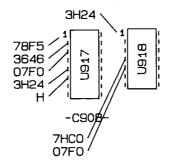
- 1. Removing jumper from U918 pin 4 enables U905.
- 2. If output signatures are incorrect, troubleshoot U905. If input signatures are incorrect troubleshoot U905, U909, U912, U915.

FAILED ADDRESS DECODING

CHECKING: 44474A

ADDRESS DECODING (U917, U918)

44474-66501 ERC: 2429


SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4

- 8. POLARITY: START __ STOP __ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC

+5 Vdc: 4094

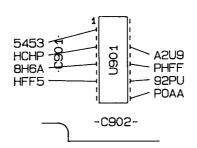
- 1. Signatures are inputs to U917 and U918. Output signatures are given in Step 1.
- 2. 'H' indicates node is tied high.

FAILED BACKPLANE BUFFER

CHECKING: 44474A

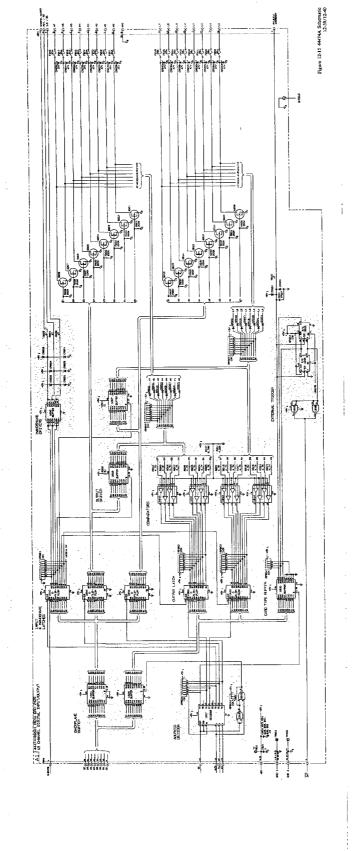
BACKPLANE BUFFER (U901)

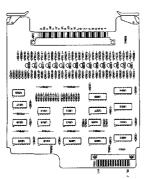
44474-66501 ERC: 2429

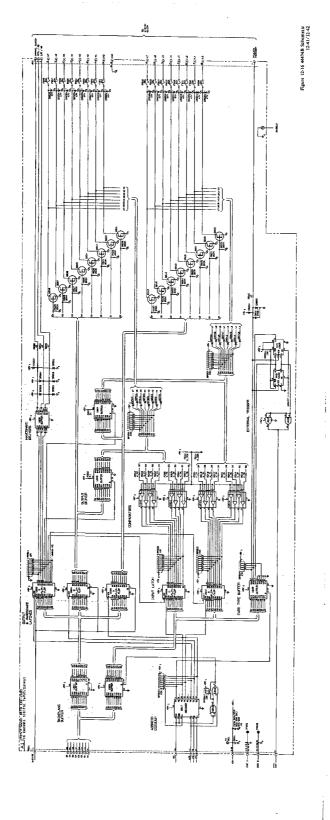

SET-UP

ON CONTROLLER (A40)

- 1. RP409 INSTALLED
- 2. ALL SWITCHES ON SP401 OPEN
- 3. JUMPER SA6 (SERV FUNC) TO GND
- 4. START/ST/SP TO SA2
- 5. STOP/QUAL TO SA2
- 6. CLOCK TO SA5
- 7. GROUND TO SA4


- 8. POLARITY: START __ STOP _ CLOCK _
- 9. INSTALL 44474A IN SLOT 1
- 10. INSTALL TEST FIXTURE ON 44474A
- 11. APPLY POWER, PRESS TEST 4 EXEC
- 12. Jumper U918 PIN 4 TO GROUND


+5 Vdc: 4094



NOTES

1. Signatures are inputs to U901. Output signatures are given in Step 2.

All the second of the second o

9282-1078 Binder Only Part No.